A255868 Least m > 0 such that gcd(m^n+18, (m+1)^n+18) > 1, or 0 if there is no such m.
1, 0, 36, 5, 8, 193801631, 7, 16280817091929, 5, 4, 9216, 815167161742047217904392262, 7, 46, 20, 5, 19, 1837, 1, 224, 8, 7, 56, 13215457, 5, 130689, 221, 4, 5, 1167507, 7, 9708, 65, 7, 20, 63, 1, 4248, 5, 5, 5, 527010, 7
Offset: 0
Examples
For n=0, gcd(m^0+18, (m+1)^0+18) = gcd(19, 19) = 19, therefore a(0)=1, the smallest possible (positive) m-value. For n=1, gcd(m^n+18, (m+1)^n+18) = gcd(m+18, m+19) = 1, therefore a(1)=0. For n=2, gcd(36^2+18, 37^2+18) = 73 and (m, m+1) = (36, 37) is the smallest pair which yields a GCD > 1 here.
Programs
-
Mathematica
A255868[n_] := Module[{m = 1}, While[GCD[m^n + 18, (m + 1)^n + 18] <= 1, m++]; m]; Join[{1, 0}, Table[A255868[n], {n, 2, 10}]] (* Robert Price, Oct 16 2018 *)
-
PARI
a(n,c=18,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
Extensions
a(5)-a(42) from Max Alekseyev, Aug 06 2015
Comments