A255869 Least m > 0 such that gcd(m^n+19, (m+1)^n+19) > 1, or 0 if there is no such m.
1, 0, 3, 2408, 1, 3976, 608, 28, 1, 88, 23, 464658, 1, 319924724, 3, 7, 1, 1628, 138, 2219409, 1, 6, 5, 594, 1, 872, 3, 92, 1, 392, 65, 2278155, 1, 3755866, 4793, 13, 1, 7873, 3, 614294, 1, 448812437, 5
Offset: 0
Examples
For n=0 and n=4, see formula with k=0 resp. k=1. For n=1, gcd(m^n+19, (m+1)^n+19) = gcd(m+19, m+20) = 1, therefore a(1)=0. For n=2, gcd(3^2+19, 4^2+19) = 7 and (m,m+1) = (3,4) is the smallest pair which yields a GCD > 1 here.
Programs
-
Mathematica
A255869[n_] := Module[{m = 1}, While[GCD[m^n + 19, (m + 1)^n + 19] <= 1, m++]; m]; Join[{1, 0}, Table[A255869[n], {n, 2, 12}]] (* Robert Price, Oct 16 2018 *)
-
PARI
a(n,c=19,L=10^7,S=1)={n!=1 && for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1 && return(a))}
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import x def A255869(n): if n == 0: return 1 k = 0 for p in primefactors(resultant(x**n+19,(x+1)**n+19)): for d in (a for a in nthroot_mod(-19,n,p,all_roots=True) if pow(a+1,n,p)==-19%p): k = min(d,k) if k else d return k # Chai Wah Wu, May 07 2024
Formula
a(4k) = 1 for k>=0, because gcd(1^(4k)+19, 2^(4k)+19) = gcd(20, 16^k-1) >= 5 since 16 = 1 (mod 5).
Extensions
a(13)-a(40) from Hiroaki Yamanouchi, Mar 12 2015
a(41)-a(42) from Max Alekseyev, Aug 06 2015
Comments