cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255872 Smallest Rhonda number to base b = n-th composite number, A002808(n).

Original entry on oeis.org

10206, 855, 1836, 15540, 1568, 560, 11475, 2392, 1000, 1470, 1815, 1632, 2695, 2080, 6764, 7788, 4797, 3094, 3024, 1944, 756, 5661, 8232, 1000, 12296, 5824, 4624, 4851, 8262, 6561, 16583, 14616, 6545, 7225, 11310, 18382, 1995, 16896, 2940, 23465, 8464, 3348
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			.   n |  b |  a(n)              |  a(n) in base b | factorization
. ----+----+--------------------+-----------------+--------------
.   1 |  4 | 10206 = A100968(1) | [2,1,3,3,1,3,2] | 2*3^6*7
.   2 |  6 |   855 = A100969(1) |       [3,5,4,3] | 3^2*5*19
.   3 |  8 |  1836 = A100970(1) |       [3,4,5,4] | 2^2*3^3*17
.   4 |  9 | 15540 = A100973(1) |     [2,3,2,7,6] | 2^2*3*5*7*37
.   5 | 10 |  1568 = A099542(1) |       [1,5,6,8] | 2^5*7^2
.   6 | 12 |   560 = A100971(1) |        [3,10,8] | 2^4*5*7
.   7 | 14 | 11475 = A100972(1) |       [4,2,7,9] | 3^3*5^2*17
.   8 | 15 |  2392 = A100974(1) |        [10,9,7] | 2^3*13*23
.   9 | 16 |  1000 = A100975(1) |        [3,14,8] | 2^3*5^3
.  10 | 18 |  1470 = A255735(1) |        [4,9,12] | 2*3*5*7^2
.  11 | 20 |  1815 = A255732(1) |       [4,10,15] | 3*5*11^2
.  12 | 21 |  1632              |       [3,14,15] | 2^5*3*17
.  13 | 22 |  2695              |       [5,12,11] | 5*7^2*11
.  14 | 24 |  2080              |       [3,14,16] | 2^5*5*13
.  15 | 25 |  6764              |      [10,20,14] | 2^2*19*89
.  16 | 26 |  7788              |      [11,13,14] | 2^2*3*11*59
.  17 | 27 |  4797              |       [6,15,18] | 3^2*13*41
.  18 | 28 |  3094              |       [3,26,14] | 2*7*13*17
.  19 | 30 |  3024 = A255736(1) |       [3,10,24] | 2^4*3^3*7
.  20 | 32 |  1944              |       [1,28,24] | 2^3*3^5
		

Crossrefs

Programs

  • Haskell
    a255872 n = head $ filter (rhonda b) $ iterate zeroless 1 where
                -- function rhonda as defined in A099542
                zeroless x = 1 + if r < b - 1 then x else b * zeroless x'
                             where (x', r) = divMod x b
                b = a002808 n