A255872 Smallest Rhonda number to base b = n-th composite number, A002808(n).
10206, 855, 1836, 15540, 1568, 560, 11475, 2392, 1000, 1470, 1815, 1632, 2695, 2080, 6764, 7788, 4797, 3094, 3024, 1944, 756, 5661, 8232, 1000, 12296, 5824, 4624, 4851, 8262, 6561, 16583, 14616, 6545, 7225, 11310, 18382, 1995, 16896, 2940, 23465, 8464, 3348
Offset: 1
Examples
. n | b | a(n) | a(n) in base b | factorization . ----+----+--------------------+-----------------+-------------- . 1 | 4 | 10206 = A100968(1) | [2,1,3,3,1,3,2] | 2*3^6*7 . 2 | 6 | 855 = A100969(1) | [3,5,4,3] | 3^2*5*19 . 3 | 8 | 1836 = A100970(1) | [3,4,5,4] | 2^2*3^3*17 . 4 | 9 | 15540 = A100973(1) | [2,3,2,7,6] | 2^2*3*5*7*37 . 5 | 10 | 1568 = A099542(1) | [1,5,6,8] | 2^5*7^2 . 6 | 12 | 560 = A100971(1) | [3,10,8] | 2^4*5*7 . 7 | 14 | 11475 = A100972(1) | [4,2,7,9] | 3^3*5^2*17 . 8 | 15 | 2392 = A100974(1) | [10,9,7] | 2^3*13*23 . 9 | 16 | 1000 = A100975(1) | [3,14,8] | 2^3*5^3 . 10 | 18 | 1470 = A255735(1) | [4,9,12] | 2*3*5*7^2 . 11 | 20 | 1815 = A255732(1) | [4,10,15] | 3*5*11^2 . 12 | 21 | 1632 | [3,14,15] | 2^5*3*17 . 13 | 22 | 2695 | [5,12,11] | 5*7^2*11 . 14 | 24 | 2080 | [3,14,16] | 2^5*5*13 . 15 | 25 | 6764 | [10,20,14] | 2^2*19*89 . 16 | 26 | 7788 | [11,13,14] | 2^2*3*11*59 . 17 | 27 | 4797 | [6,15,18] | 3^2*13*41 . 18 | 28 | 3094 | [3,26,14] | 2*7*13*17 . 19 | 30 | 3024 = A255736(1) | [3,10,24] | 2^4*3^3*7 . 20 | 32 | 1944 | [1,28,24] | 2^3*3^5
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Rhonda Number
Crossrefs
Programs
-
Haskell
a255872 n = head $ filter (rhonda b) $ iterate zeroless 1 where -- function rhonda as defined in A099542 zeroless x = 1 + if r < b - 1 then x else b * zeroless x' where (x', r) = divMod x b b = a002808 n
Comments