A143291
Triangle T(n,k), n>=2, 0<=k<=n-2, read by rows: numbers of binary words of length n containing at least one subword 10^{k}1 and no subwords 10^{i}1 with i
1, 3, 1, 8, 2, 1, 19, 4, 2, 1, 43, 8, 3, 2, 1, 94, 15, 5, 3, 2, 1, 201, 27, 9, 4, 3, 2, 1, 423, 48, 15, 6, 4, 3, 2, 1, 880, 84, 24, 10, 5, 4, 3, 2, 1, 1815, 145, 38, 16, 7, 5, 4, 3, 2, 1, 3719, 248, 60, 24, 11, 6, 5, 4, 3, 2, 1, 7582, 421, 94, 35, 17, 8, 6, 5, 4, 3, 2, 1, 15397, 710, 146, 51, 25, 12, 7, 6, 5, 4, 3, 2, 1
Offset: 2
Examples
T (5,1) = 4, because there are 4 words of length 5 containing at least one subword 101 and no subword 11: 00101, 01010, 10100, 10101. Triangle begins: 1; 3, 1; 8, 2, 1; 19, 4, 2, 1; 43, 8, 3, 2, 1; 94, 15, 5, 3, 2, 1; 201, 27, 9, 4, 3, 2, 1; 423, 48, 15, 6, 4, 3, 2, 1;
Links
- Alois P. Heinz, Rows n = 2..142, flattened
Crossrefs
Programs
-
Magma
R
:= PowerSeriesRing(Integers(), 50); A143291:= func< n,k | Coefficient(R!( x^k/((x^(k-1) +x-1)*(x^k +x-1)) ), n) >; [A143291(n,k): k in [2..n], n in [2..12]]; // G. C. Greubel, Jun 01 2025 -
Maple
as:= proc (n, k) option remember; if k=0 then 2^n elif n<=k and n>=0 then n+1 elif n>0 then as(n-1, k) +as(n-k-1, k) else as(n+1+k, k) -as(n+k, k) fi end: T:= (n, k)-> as(n, k) -as(n, k+1): seq(seq(T(n, k), k=0..n-2), n=2..15);
-
Mathematica
as[n_, k_] := as[n, k] = Which[ k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, as[n-1, k] + as[n-k-1, k], True, as[n+1+k, k] - as[n+k, k] ]; t [n_, k_] := as[n, k] - as[n, k+1]; Table[Table[t[n, k], {k, 0, n-2}], {n, 2, 14}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
-
SageMath
@CachedFunction def b(n,k): if k==0: return 2^n elif n <= k and n>=0: return n+1 elif n>0: return b(n-1,k) + b(n-k-1,k) else: return b(n+k+1,k) - b(n+k,k) def A143291(n,k): return b(n,k) - b(n,k+1) print(flatten([[A143291(n,k) for k in range(n-1)] for n in range(2,16)])) # G. C. Greubel, Jun 01 2025
Formula
G.f. of column k: x^(k+2) / ((x^(k+1)+x-1)*(x^(k+2)+x-1)).
Comments