A255876 a(n) = (4*n^2 + 4*n - 3 - 3*(-1)^n)/2.
4, 9, 24, 37, 60, 81, 112, 141, 180, 217, 264, 309, 364, 417, 480, 541, 612, 681, 760, 837, 924, 1009, 1104, 1197, 1300, 1401, 1512, 1621, 1740, 1857, 1984, 2109, 2244, 2377, 2520, 2661, 2812, 2961, 3120, 3277, 3444, 3609, 3784, 3957, 4140, 4321, 4512, 4701
Offset: 1
Examples
_ _|_|_ _ _ _ _|_|_|_|_ _|_|_ _|_|_|_ _|_|_|_|_|_|_ _ _ _|_|_|_|_ _|_|_|_|_|_ _|_|_|_|_|_|_|_|_ _ |_|_| |_|_|_|_|_| |_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_| |_| |_|_| |_|_|_| |_|_|_|_|_|_| |_|_|_|_|_|_|_| |_| |_|_|_|_| |_|_|_|_|_| |_|_| |_|_|_| |_| n=1 n=2 n=3 n=4 n=5
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[(4*n^2 + 4*n - 3 - 3*(-1)^n)/2 : n in [1..50]];
-
Maple
A255876:=n->(4*n^2 + 4*n - 3 - 3*(-1)^n)/2: seq(A255876(n), n=1..50);
-
Mathematica
CoefficientList[Series[(3 x^3 - 6 x^2 - x - 4)/((x + 1) (x - 1)^3), {x, 0, 50}], x] LinearRecurrence[{2,0,-2,1},{4,9,24,37},60] (* Harvey P. Dale, Dec 26 2024 *)
-
PARI
vector(100,n,(4*n^2 + 4*n - 3 - 3*(-1)^n)/2) \\ Derek Orr, Mar 09 2015
Comments