cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255876 a(n) = (4*n^2 + 4*n - 3 - 3*(-1)^n)/2.

Original entry on oeis.org

4, 9, 24, 37, 60, 81, 112, 141, 180, 217, 264, 309, 364, 417, 480, 541, 612, 681, 760, 837, 924, 1009, 1104, 1197, 1300, 1401, 1512, 1621, 1740, 1857, 1984, 2109, 2244, 2377, 2520, 2661, 2812, 2961, 3120, 3277, 3444, 3609, 3784, 3957, 4140, 4321, 4512, 4701
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 08 2015

Keywords

Comments

Take an n X n square grid and add unit squares along each side except for the corners --> do this repeatedly along each side with the same restriction until no squares can be added. a(n) gives the number of vertices in each figure (see example and cf. A255840).

Examples

			                                                                 _
                                                               _|_|_
                            _              _ _               _|_|_|_|_
                          _|_|_          _|_|_|_           _|_|_|_|_|_|_
              _ _       _|_|_|_|_      _|_|_|_|_|_       _|_|_|_|_|_|_|_|_
    _        |_|_|     |_|_|_|_|_|    |_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
   |_|       |_|_|       |_|_|_|      |_|_|_|_|_|_|       |_|_|_|_|_|_|_|
                           |_|          |_|_|_|_|           |_|_|_|_|_|
                                          |_|_|               |_|_|_|
                                                                |_|
   n=1        n=2          n=3             n=4                  n=5
		

Crossrefs

Cf. A000290 (squares), A085046, A198442, A255840.

Programs

  • Magma
    [(4*n^2 + 4*n - 3 - 3*(-1)^n)/2 : n in [1..50]];
    
  • Maple
    A255876:=n->(4*n^2 + 4*n - 3 - 3*(-1)^n)/2: seq(A255876(n), n=1..50);
  • Mathematica
    CoefficientList[Series[(3 x^3 - 6 x^2 - x - 4)/((x + 1) (x - 1)^3), {x, 0, 50}], x]
    LinearRecurrence[{2,0,-2,1},{4,9,24,37},60] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    vector(100,n,(4*n^2 + 4*n - 3 - 3*(-1)^n)/2) \\ Derek Orr, Mar 09 2015

Formula

G.f.: x*(3*x^3 - 6*x^2 - x - 4)/((x + 1)*(x - 1)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = A000290(n+1) + 4*A198442(n).