A255881 Expansion of exp( Sum_{n >= 1} A000364(n)*x^n/n ).
1, 1, 3, 23, 371, 10515, 461869, 28969177, 2454072147, 269732425859, 37312477130105, 6342352991066661, 1299300852841580893, 315702973949640373933, 89765549161833322593411, 29526682496433138896248775, 11124674379405792463701519059
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..200
- E. W. Weisstein, Euler Polynomial
Programs
-
Maple
#A255881 k := 2: exp(add(k^(2*n)*euler(2*n, 1/k)*(-x)^n/n, n = 1 .. 16)): seq(coeftayl(%, x = 0, n), n = 0 .. 16);
-
Mathematica
A000364:= Table[Abs[EulerE[2 n]], {n, 0, 80}]; a:= With[{nmax = 70}, CoefficientList[Series[Exp[Sum[A000364[[k + 1]]*x^(k)/(k), {k, 1, 75}]], {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 26 2018 *)
Formula
O.g.f.: exp( x + 5*x^2/2 + 61*x^3/3 + 1385*x^4/4 + ... ) = 1 + x + 3*x^2 + 23*x^3 + 371*x^4 + ....
a(0) = 1 and for n >= 1, n*a(n) = Sum_{k = 1..n} (-1)^k*2^(2*k)*E(2*k,1/2)*a(n-k).
a(n) ~ 2^(4*n + 3) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Jun 08 2019
Comments