A255901 Smallest base b such that there exist exactly n Wieferich primes (primes p satisfying b^(p-1) == 1 (mod p^2)) less than b.
5, 17, 19, 116, 99, 361, 1451, 1693, 10768, 13834, 208301, 548291
Offset: 1
Examples
From _Robert G. Wilson v_, Mar 11 2015: (Start) n b p 1: 5 {2} 2: 17 {2, 3} 3: 19 {3, 7, 13} 4: 116 {3, 7, 19, 47} 5: 99 {5, 7, 13, 19, 83} 6: 361 {2, 3, 7, 13, 43, 137} 7: 1451 {5, 7, 11, 13, 83, 173, 1259} 8: 1693 {2, 3, 5, 11, 31, 37, 61, 109} 9: 10768 {5, 11, 17, 19, 79, 101, 139, 6343, 10177} 10: 13834 {3, 11, 17, 19, 43, 139, 197, 2437, 5849, 6367} 11: 208301 {2, 5, 29, 47, 59, 113, 661, 8209, 13679, 15679, 55633} 12: 548291 {7, 11, 19, 29, 31, 37, 97, 211, 547, 911, 2069, 28927} ... (End)
Programs
-
Mathematica
f[n_] := Block[{b = 2, p}, While[p = Prime@ Range@ PrimePi[b - 1]; Count[ PowerMod[b, p - 1, p^2], 1] != n, b++]; b]; Array[f, 11] (* Robert G. Wilson v, Mar 11 2015 *)
-
PARI
for(n=1, 10, b=2; while(b > 0, i=0; forprime(p=1, b, if(Mod(b, p^2)^(p-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))
-
Python
from itertools import count from sympy import primerange def A255901(n): for b in count(1): if n == sum(1 for p in primerange(2,b+1) if pow(b,p-1,p**2) == 1): return b # Chai Wah Wu, May 18 2022
Extensions
a(11) from Robert G. Wilson v, Mar 11 2015
a(12) from Robert G. Wilson v, Mar 12 2015