cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256236 Smallest b > 1 such that the first n primes p (i.e., A000040(1)-A000040(n)) all satisfy b^(p-1) == 1 (mod p^2), i.e., smallest base b larger than 1 such that any member of the set of first n primes is a base-b Wieferich prime.

Original entry on oeis.org

5, 17, 449, 557, 19601, 132857, 4486949, 126664001, 2363321449, 5229752849, 2486195039249, 16250570614349, 83322586961893, 39699586259362801, 8042447016668335049, 449320365877347849601, 4376479338174582826793
Offset: 1

Views

Author

Felix Fröhlich, Mar 25 2015

Keywords

Comments

There might be bases b where prime(n+1) is also a base-b Wieferich prime. This does not affect the membership of b in the sequence.
Are there any terms such that a(n) = a(n+1)?
Does b exist for all n?
All currently known terms satisfy a(n) >= A255901(n). Are there any terms such that a(n) < A255901(n)?
If it exists, a(12) > 6*10^12. - Robert Price, Oct 10 2019
a(n) <= prime(n)#^2+1 = A189409(n), since any prime p is a Wieferich prime in base k*p^2+1 for all k. - Jens Kruse Andersen, Dec 20 2020

Examples

			Values of bases b and the values of first Wieferich primes p to base b:
b             | p
-------------------------------------------------------------------------
5             | 2, 20771, 40487 ...
17            | 2, 3, 46021, 48947 ...
449           | 2, 3, 5, 1789 ...
557           | 2, 3, 5, 7, 23, 39829 ...
19601         | 2, 3, 5, 7, 11, 23, 47 ...
132857        | 2, 3, 5, 7, 11, 13, 73, 257 ...
4486949       | 2, 3, 5, 7, 11, 13, 17, 89, 197 ...
126664001     | 2, 3, 5, 7, 11, 13, 17, 19, 101, 2789 ...
2363321449    | 2, 3, 5, 7, 11, 13, 17, 19, 23 ...
5229752849    | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 881, 2246969 ...
2486195039249 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ...
		

Crossrefs

Cf. A255901.

Programs

  • Mathematica
    b = 2; Table[While[fnd = True;
      For[i = 1, i <= n, i++,
       p = Prime[i];
       If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False;  Break[]]];
    b++; ! fnd]; b - 1, {n, 5}] (* Robert Price, Oct 10 2019 *)
  • PARI
    a(n) = my(v=primes(n)); for(b=2, oo, for(k=1, #v, if(Mod(b, v[k]^2)^(v[k]-1)!=1, break, if(k==#v, return(b)))))

Extensions

a(9)-a(11) from Robert Price, Oct 10 2019
a(12)-a(17) from Jens Kruse Andersen, Dec 28 2020

A255885 Smallest base b such that there exist exactly n Wieferich pseudoprimes (composites c satisfying b^(c-1) == 1 (mod c^2)) less than b.

Original entry on oeis.org

17, 65, 145, 485, 649, 1297, 577, 2024, 5185, 8182, 7057, 8749, 14401, 30753, 56449, 57601, 77401, 129473, 51841, 129601, 254017, 296449, 202501, 389377
Offset: 1

Views

Author

Felix Fröhlich, Mar 09 2015

Keywords

Crossrefs

Programs

  • PARI
    for(n=1, 10, b=2; while(b > 0, i=0; forcomposite(c=2, b, if(Mod(b, c^2)^(c-1)==1, i++)); if(i==n, print1(b, ", "); break({1})); b++))
    
  • Python
    from itertools import count
    from sympy import isprime
    def A255885(n):
        for b in count(1):
            if n == sum(1 for c in range(2,b+1) if not isprime(c) and pow(b,c-1,c**2) == 1):
                return b # Chai Wah Wu, May 18 2022

Extensions

a(20) from Chai Wah Wu, May 18 2022
a(21)-a(24) from Chai Wah Wu, May 19 2022
Showing 1-2 of 2 results.