A255918 Array a(n,m) read by descending antidiagonals giving the number of intervals in a generalized Tamari lattice of m-ballot paths of size n.
1, 1, 1, 1, 3, 1, 1, 6, 13, 1, 1, 10, 58, 68, 1, 1, 15, 170, 703, 399, 1, 1, 21, 395, 3685, 9729, 2530, 1, 1, 28, 791, 13390, 91881, 146916, 16965, 1, 1, 36, 1428, 38591, 524256, 2509584, 2359968, 118668, 1, 1, 45, 2388, 94738, 2180262, 22533126
Offset: 1
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 6, 10, 15, 21, 28, 36, 45, ... 1, 13, 58, 170, 395, 791, 1428, 2388, 3765, ... 1, 68, 703, 3685, 13390, 38591, 94738, 206718, 412095, ... 1, 399, 9729, 91881, 524256, 2180262, 7291550, 20787390, 52450587, ... ... 2nd row is A000217 (triangular numbers); 3rd row is A103220; 4th row is not in the OEIS; 2nd column is A000260 (number of intervals in the usual Tamari lattice of size n); 3rd column is not in the OEIS.
Links
- Olivier Bernardi and Nicolas Bonichon, Intervals in Catalan lattices and realizers of triangulations, Journal of Combinatorial Theory, Series A 116:1 (2009), pp. 55-75.
- M. Bousquet-Mélou, E. Fusy, and L.-F. Préville Ratelle, The number of intervals in the m-Tamari lattices, arXiv:1106.1498 [math.CO], The Electronic Journal of Combinatorics 18, 2 (2011) P31.
- Clay Cordova and Shu-Heng Shao, Counting Trees in Supersymmetric Quantum Mechanics arXiv:1502.08050v2 [hep-th], 2015.
- Thorsten Weist, Localization in quiver moduli spaces, arXiv:0903.5442 [math.RT], 2009.
Crossrefs
Programs
-
Mathematica
a[n_, m_] := ((m + 1)/(n*(m*n + 1)))*Binomial[(m + 1)^2*n + m, n - 1]; Table[a[n - m, m], {n, 1, 12}, {m, n - 1, 0, -1}] // Flatten
-
Sage
def a(n, m): return (m + 1) * binomial((m + 1)**2 * n + m, n - 1) // (n*(m*n + 1)) # F. Chapoton, Mar 24 2021
Formula
a(n,m) = ((m + 1)/(n*(m*n + 1)))*binomial((m + 1)^2*n + m, n - 1).
Comments