cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255925 Bases b for which exactly four Wieferich primes p with p < b exist such that p is a base-b Wieferich prime.

Original entry on oeis.org

116, 117, 118, 233, 245, 249, 251, 261, 269, 276, 298, 325, 369, 374, 401, 423, 460, 485, 487, 505, 526, 604, 618, 629, 653, 717, 721, 723, 737, 776, 793, 838, 851, 856, 857, 863, 867, 881, 893, 932, 962, 969, 978, 1025, 1037, 1045, 1057, 1059, 1079, 1106
Offset: 1

Views

Author

Felix Fröhlich, Mar 23 2015

Keywords

Comments

Numbers b such that A255920(b) = 4.

Crossrefs

Cf. A255920.
Cf. bases b with exactly k base-b Wieferich primes less than b: A255921 (k=0), A255922 (k=1), A255923 (k=2), A255924 (k=3), A325881 (k=5), A325882 (k=6), A325883 (k=7), A325884 (k=8), A325885 (k=9), A325886 (k=10).

Programs

  • Mathematica
    wp[b_] := Count[Complement[Prime[Range[PrimePi[b]]], FactorInteger[b][[All, 1]] ], p_ /; Divisible[b^(p - 1) - 1, p^2]];
    Select[Range[2, 1200], wp[#] == 4&] (* Jean-François Alcover, Nov 26 2017 *)
  • PARI
    is(n) = my(i=0); forprime(p=1, n-1, if(Mod(n, p^2)^(p-1)==1, i++); if(i > 4, return(0))); i==4
    
  • Sage
    [b for b in range(3,1107) if len([p for p in range(2,b) if is_prime(p) and mod(b, p^2)^(p-1)==1])==4] # Danny Rorabaugh, Mar 31 2015