A255925 Bases b for which exactly four Wieferich primes p with p < b exist such that p is a base-b Wieferich prime.
116, 117, 118, 233, 245, 249, 251, 261, 269, 276, 298, 325, 369, 374, 401, 423, 460, 485, 487, 505, 526, 604, 618, 629, 653, 717, 721, 723, 737, 776, 793, 838, 851, 856, 857, 863, 867, 881, 893, 932, 962, 969, 978, 1025, 1037, 1045, 1057, 1059, 1079, 1106
Offset: 1
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Wieferich Prime
Crossrefs
Programs
-
Mathematica
wp[b_] := Count[Complement[Prime[Range[PrimePi[b]]], FactorInteger[b][[All, 1]] ], p_ /; Divisible[b^(p - 1) - 1, p^2]]; Select[Range[2, 1200], wp[#] == 4&] (* Jean-François Alcover, Nov 26 2017 *)
-
PARI
is(n) = my(i=0); forprime(p=1, n-1, if(Mod(n, p^2)^(p-1)==1, i++); if(i > 4, return(0))); i==4
-
Sage
[b for b in range(3,1107) if len([p for p in range(2,b) if is_prime(p) and mod(b, p^2)^(p-1)==1])==4] # Danny Rorabaugh, Mar 31 2015
Comments