cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255933 a(n) is the largest integer m such that s/(m!-1) is an integer, where s is the sum of all previous terms; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 5, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 5, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Neri Gionata, Mar 11 2015

Keywords

Comments

For all n>1, a(n) exists and is at least 2, since 2 gives a denominator (2!-1) = 1, thus an integer.
The sequence of partial sums is: 1,3,5,8,10,13,15,18,20,23,27,29,31,33,35,38,...
The record values occur at n=1,2,4,11,49,286,1997,...

Programs

  • Maple
    a(5) = 2 since (1+2+2+3)/(n!-1) = 8/(2!-1) = 8, an integer.
    a(6) = 3 since (1+2+2+3+2)/(n!-1) = 10/(3!-1) = 2, an integer.
  • PARI
    lista(nn) = {v = [1]; s = 1; print1(s, ", "); for (n=2, nn, k = 2; while(k!-1 <= s, k++); until (type(s/(k!-1)) == "t_INT", k--); s += k; print1(k, ", "); v = concat(v, k););} \\ Michel Marcus, Mar 11 2015