cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Neri Gionata

Neri Gionata's wiki page.

Neri Gionata has authored 4 sequences.

A256602 Primes of form 12*k + 1 and not a twin prime.

Original entry on oeis.org

37, 97, 157, 277, 337, 373, 397, 409, 457, 541, 577, 613, 673, 709, 733, 757, 769, 853, 877, 937, 997, 1009, 1069, 1117, 1129, 1201, 1213, 1237, 1249, 1297, 1381, 1549, 1597, 1657, 1693, 1741, 1753, 1777, 1801, 1861, 1993, 2017, 2053, 2137, 2161, 2221, 2281, 2293, 2377
Offset: 1

Author

Neri Gionata, Apr 06 2015

Keywords

Comments

A142793 is a subsequence.

Examples

			37 = 12*3+1 and 35 is not prime, so 37 belongs to the sequence.
		

Crossrefs

Cf. A142793 (primes congruent to 37 mod 60).

Programs

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Apr 06 2015

A255230 Integers n such that n^2 = 2*x*(y-x), where x and y are consecutive terms in A014574.

Original entry on oeis.org

4, 12, 48, 120, 468, 1260, 720, 2448, 10080, 12060, 15912, 7560, 18480, 7392, 9660, 27720, 33480, 14400, 25080, 36708, 10092, 34188, 42120, 83400, 29820, 20040, 67320, 114408, 206628, 67368, 72192, 102648, 152928, 51732, 59880, 152700, 106440, 100980, 171480
Offset: 1

Author

Neri Gionata, Feb 18 2015

Keywords

Comments

n is a term if n^2 = 2*x*(y-x), where x and y are the averages of two consecutive twin prime pairs.

Examples

			48^2 = 2*192*(198-192), and 192 and 198 are consecutive terms in A014574, so 48 is in the sequence.
		

Crossrefs

Cf. A014574.

Programs

  • PARI
    lista(nn) = {p=2; last = 0; forprime (q=3, nn, if (q-p==2, if (! last, last = p+1, new = p+1; val = new^2-last^2 - (new-last)^2; if (issquare(val), print1(sqrtint(val), ", ")); last = new; );); p=q;);} \\ Michel Marcus, Feb 18 2015

Extensions

More terms from Michel Marcus, Feb 18 2015

A255933 a(n) is the largest integer m such that s/(m!-1) is an integer, where s is the sum of all previous terms; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 5, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 5, 2, 3, 2, 3, 4, 2, 2, 2, 2, 3, 2
Offset: 1

Author

Neri Gionata, Mar 11 2015

Keywords

Comments

For all n>1, a(n) exists and is at least 2, since 2 gives a denominator (2!-1) = 1, thus an integer.
The sequence of partial sums is: 1,3,5,8,10,13,15,18,20,23,27,29,31,33,35,38,...
The record values occur at n=1,2,4,11,49,286,1997,...

Programs

  • Maple
    a(5) = 2 since (1+2+2+3)/(n!-1) = 8/(2!-1) = 8, an integer.
    a(6) = 3 since (1+2+2+3+2)/(n!-1) = 10/(3!-1) = 2, an integer.
  • PARI
    lista(nn) = {v = [1]; s = 1; print1(s, ", "); for (n=2, nn, k = 2; while(k!-1 <= s, k++); until (type(s/(k!-1)) == "t_INT", k--); s += k; print1(k, ", "); v = concat(v, k););} \\ Michel Marcus, Mar 11 2015

A255229 Integers n such that n^2 - 1 is the difference of the squares of twin primes.

Original entry on oeis.org

5, 7, 11, 13, 17, 31, 41, 43, 49, 77, 83, 101, 109, 119, 133, 179, 203, 263, 277, 283, 307, 311, 329, 353, 377, 407, 413, 419, 431, 437, 463, 473, 493, 577, 581, 619, 629, 703, 757, 791, 811, 907, 911, 913, 991, 1001, 1037, 1061, 1103, 1121, 1249, 1289, 1337, 1373, 1441, 1457, 1487, 1523, 1597, 1651, 1781
Offset: 1

Author

Neri Gionata, Feb 18 2015

Keywords

Examples

			31^2 - 1 = 241^2 - 239^2, and (239, 241) is a twin prime pair, so 31 is in the sequence.
		

Crossrefs

Cf. A088486 (corresponding lesser twin primes), A111046.

Programs

  • Mathematica
    lst={};f[n_]:=Sqrt[Prime[n]^2-NextPrime[Prime[n],-1]^2+1];
    Do[If[Prime[n]-NextPrime[Prime[n],-1]==2&&IntegerQ[f[n]],AppendTo[lst,f[n]]],{n,3,10^5}];lst (* Ivan N. Ianakiev, Mar 30 2015 *)
  • PARI
    lista(nn) = {forprime(p=3, nn, q = precprime(p-1); if (((p-q) == 2) && issquare(d=p^2-q^2+1), print1(sqrtint(d), ", ")); ); } \\ Michel Marcus, Feb 18 2015