cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255937 Number of distinct products of distinct factorials up to n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 56, 108, 204, 332, 664, 1114, 2228, 4078, 7018, 11402, 22804, 40638, 81276, 140490, 230328, 391544, 783088, 1287034, 2273676, 3903626, 6837760, 10368184, 20736368, 34081198, 68162396
Offset: 0

Views

Author

Keywords

Examples

			a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; (f-> `if`(n=0, {f},
          map(x-> [x, x*f][], s(n-1))))(n!)
        end:
    a:= n-> nops(s(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 16 2015
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, May 01 2022 *)
  • PARI
    a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i]))

Formula

Erdős and Graham prove that log a(n) ~ n log log n/log n.
a(p) = 2*a(p-1) for prime p. - Jon E. Schoenfield, Apr 01 2015

Extensions

More terms from Alois P. Heinz, Mar 16 2015
a(31) (=2*a(30)) from Jon E. Schoenfield, Apr 01 2015