A255937 Number of distinct products of distinct factorials up to n!.
1, 1, 2, 4, 8, 16, 28, 56, 108, 204, 332, 664, 1114, 2228, 4078, 7018, 11402, 22804, 40638, 81276, 140490, 230328, 391544, 783088, 1287034, 2273676, 3903626, 6837760, 10368184, 20736368, 34081198, 68162396
Offset: 0
Examples
a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4.
Links
- Paul Erdős and Ron L. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355.
Programs
-
Maple
s:= proc(n) option remember; (f-> `if`(n=0, {f}, map(x-> [x, x*f][], s(n-1))))(n!) end: a:= n-> nops(s(n)): seq(a(n), n=0..20); # Alois P. Heinz, Mar 16 2015
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, May 01 2022 *)
-
PARI
a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i]))
Formula
Erdős and Graham prove that log a(n) ~ n log log n/log n.
a(p) = 2*a(p-1) for prime p. - Jon E. Schoenfield, Apr 01 2015
Extensions
More terms from Alois P. Heinz, Mar 16 2015
a(31) (=2*a(30)) from Jon E. Schoenfield, Apr 01 2015