A255938 Langton's ant walk: number of black cells on the infinite grid after the ant moves n times.
0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 6, 7, 8, 9, 10, 9, 8, 7, 6, 7, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 12, 11, 10, 9, 10, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 15, 14, 13, 12, 13, 12, 11, 12, 13, 12, 13, 14, 15, 16, 15, 14, 13, 12, 13, 12, 13, 14, 15, 16, 15, 16, 17
Offset: 0
References
- D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 63.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
- A. Gajardo, A. Moreira, and E. Goles, Complexity of Langton's ant, Discrete Applied Mathematics, 117 (2002), 41-50.
- Chris G. Langton, Studying artificial life with cellular automata, Physica D: Nonlinear Phenomena, 22 (1-3) (1986), 120-149.
- Wikipedia, Langton's ant.
Crossrefs
Cf. A126978.
Programs
-
Mathematica
size = 10; grid = SparseArray[{}, {size, size}, 1]; {X, Y, n} = {size, size, 0}/2 // Round; While[1 <= X <= size && 1 <= Y <= size, n += grid[[X, Y]] // Sow; grid[[X, Y]] *= -1; {X, Y} += {Cos[\[Pi]/2 n], Sin[\[Pi]/2 n]}; ] // Reap // Last // Last // Prepend[#, 0] & (* Albert Lau, Jun 19 2016 *)
Formula
a(n+104) = a(n) + 12 for n > 9976. - Andrey Zabolotskiy, Jul 05 2016
Comments