cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255965 Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7).

Original entry on oeis.org

1, 1, 9, 45, 201, 819, 3357, 13329, 52215, 199686, 750733, 2774793, 10112184, 36357280, 129131448, 453379226, 1574884565, 5415956550, 18450934294, 62303210591, 208624947952, 693066815809, 2285129922950, 7480504628754, 24320897894515, 78557786077315
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 12 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)).

Crossrefs

Cf. A000041 (m=1), A000219 (m=2), A000294 (m=3), A000335 (m=4), A000391 (m=5), A000417 (m=6), A000428 (m=7).

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!),{k,1,nmax}],{x,0,nmax}],x]

Formula

G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)^8)). - Ilya Gutkovskiy, May 28 2018