cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256033 Number of idempotents of rank 1 in partition monoid P_n.

Original entry on oeis.org

1, 5, 43, 529, 8451, 167397, 3984807, 111319257, 3583777723, 131082199809, 5385265586075, 246172834737485, 12422776100542887, 687441750763500441, 41475644663003037947, 2714680813135603845921
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2015

Keywords

Crossrefs

Programs

  • Maple
    e256033 := proc(n,r,s)
        option remember;
        local resu,m,a,b;
        if n <= 0 then
            return 0;
        end if;
        if s = 1 then
            combinat[stirling2](n,r) ;
        elif r= 1 then
            combinat[stirling2](n,s) ;
        else
            resu := s*procname(n-1,r-1,s)+r*procname(n-1,r,s-1)+r*s*procname(n-1,r,s) ;
            for m from 1 to n-2 do
            for a from 1 to r-1 do
            for b from 1 to s-1 do
                resu := resu + binomial(n-2,m) *(a*(s-b)+b*(r-a))
                    *procname(m,a,b)*procname(n-m-1,r-a,s-b);
            end do:
            end do:
            end do:
            resu ;
        end if;
    end proc:
    A256033 := proc(n)
        a := 0 ;
        for r from 1 to n do
        for s from 1 to n do
            a  := a+r*s*e256033(n,r,s) ;
        end do;
        end do;
    end proc:
    seq(A256033(n),n=1..16) ; # R. J. Mathar, Mar 23 2015
  • Mathematica
    f[n_, r_, s_] := f[n, r, s] = Module[{resu, m, a, b}, Which[n <= 0, 0, s == 1, StirlingS2[n, r], r == 1, StirlingS2[n, s], True, resu = s*f[n - 1, r - 1, s] + r*f[n - 1, r, s - 1] + r*s*f[n - 1, r, s]; Do[resu += Binomial[n - 2, m]*(b*(r - a) + a*(s - b))*f[m, a, b]*f[-m + n - 1, r - a, s - b], {m, n}, {a, r - 1}, {b, s - 1}]; resu]];
    a[n_] := Module[{b = 0}, Do[b += r*s*f[n, r, s], {r, n}, {s, n}]; b];
    Array[a, 16] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar *)
  • Sage
    @cached_function
    def F(n, r, s):
        if n <= 0: return 0
        if s == 1: return stirling_number2(n, r)
        if r == 1: return stirling_number2(n, s)
        ret = s*F(n-1,r-1,s)+r*F(n-1,r,s-1)+r*s*F(n-1,r,s)
        for m in (1..n-2):
            for a in (1..r-1):
                for b in (1..s-1):
                    ret += binomial(n-2,m)*(a*(s-b)+b*(r-a))*F(m,a,b)*F(n-m-1,r-a,s-b)
        return ret
    @cached_function
    def A256033(n):
        a = 0
        for r in (1..n):
            for s in (1..n):
                a += r*s*F(n, r, s)
        return a
    [A256033(n) for n in (1..9)] # Peter Luschny, Jan 17 2016