A256033 Number of idempotents of rank 1 in partition monoid P_n.
1, 5, 43, 529, 8451, 167397, 3984807, 111319257, 3583777723, 131082199809, 5385265586075, 246172834737485, 12422776100542887, 687441750763500441, 41475644663003037947, 2714680813135603845921
Offset: 1
Keywords
Links
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014. See Table 3.
Programs
-
Maple
e256033 := proc(n,r,s) option remember; local resu,m,a,b; if n <= 0 then return 0; end if; if s = 1 then combinat[stirling2](n,r) ; elif r= 1 then combinat[stirling2](n,s) ; else resu := s*procname(n-1,r-1,s)+r*procname(n-1,r,s-1)+r*s*procname(n-1,r,s) ; for m from 1 to n-2 do for a from 1 to r-1 do for b from 1 to s-1 do resu := resu + binomial(n-2,m) *(a*(s-b)+b*(r-a)) *procname(m,a,b)*procname(n-m-1,r-a,s-b); end do: end do: end do: resu ; end if; end proc: A256033 := proc(n) a := 0 ; for r from 1 to n do for s from 1 to n do a := a+r*s*e256033(n,r,s) ; end do; end do; end proc: seq(A256033(n),n=1..16) ; # R. J. Mathar, Mar 23 2015
-
Mathematica
f[n_, r_, s_] := f[n, r, s] = Module[{resu, m, a, b}, Which[n <= 0, 0, s == 1, StirlingS2[n, r], r == 1, StirlingS2[n, s], True, resu = s*f[n - 1, r - 1, s] + r*f[n - 1, r, s - 1] + r*s*f[n - 1, r, s]; Do[resu += Binomial[n - 2, m]*(b*(r - a) + a*(s - b))*f[m, a, b]*f[-m + n - 1, r - a, s - b], {m, n}, {a, r - 1}, {b, s - 1}]; resu]]; a[n_] := Module[{b = 0}, Do[b += r*s*f[n, r, s], {r, n}, {s, n}]; b]; Array[a, 16] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar *)
-
Sage
@cached_function def F(n, r, s): if n <= 0: return 0 if s == 1: return stirling_number2(n, r) if r == 1: return stirling_number2(n, s) ret = s*F(n-1,r-1,s)+r*F(n-1,r,s-1)+r*s*F(n-1,r,s) for m in (1..n-2): for a in (1..r-1): for b in (1..s-1): ret += binomial(n-2,m)*(a*(s-b)+b*(r-a))*F(m,a,b)*F(n-m-1,r-a,s-b) return ret @cached_function def A256033(n): a = 0 for r in (1..n): for s in (1..n): a += r*s*F(n, r, s) return a [A256033(n) for n in (1..9)] # Peter Luschny, Jan 17 2016