cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256068 Number T(n,k) of rooted identity trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 14, 16, 0, 3, 60, 174, 125, 0, 6, 254, 1434, 2464, 1296, 0, 12, 1087, 10746, 33362, 40455, 16807, 0, 25, 4742, 77556, 388312, 816535, 763104, 262144, 0, 52, 21020, 551460, 4191916, 13617210, 21501684, 16328620, 4782969
Offset: 1

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Examples

			T(4,2) = 14:
:   0   0   0   0   0   0     0       0
:   |   |   |   |   |   |     |       |
:   1   1   2   2   2   1     1       2
:   |   |   |   |   |   |    / \     / \
:   1   2   1   2   1   2   1   2   1   2
:   |   |   |   |   |   |
:   2   1   1   1   2   1
:
:     0      0      0      0      0      0
:    / \    / \    / \    / \    / \    / \
:   1   1  2   1  1   2  2   2  1   2  2   1
:   |      |      |      |      |      |
:   2      1      1      1      2      2
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,    3;
  0,  2,   14,    16;
  0,  3,   60,   174,    125;
  0,  6,  254,  1434,   2464,   1296;
  0, 12, 1087, 10746,  33362,  40455,  16807;
  0, 25, 4742, 77556, 388312, 816535, 763104, 262144;
  ...
		

Crossrefs

Columns k=0-1 give: A063524 (for n>0), A004111 (for n>1):
Main diagonal gives: A000272 (for n>0).
Row sums give A319220(n-1).
T(2n+1,n) gives A309996.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n - j, k] Sum[k A[d, k] d * (-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n - 1}]/(n - 1)];
    T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255517(n).