A256068 Number T(n,k) of rooted identity trees with n nodes and colored non-root nodes using exactly k colors; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
1, 0, 1, 0, 1, 3, 0, 2, 14, 16, 0, 3, 60, 174, 125, 0, 6, 254, 1434, 2464, 1296, 0, 12, 1087, 10746, 33362, 40455, 16807, 0, 25, 4742, 77556, 388312, 816535, 763104, 262144, 0, 52, 21020, 551460, 4191916, 13617210, 21501684, 16328620, 4782969
Offset: 1
Examples
T(4,2) = 14: : 0 0 0 0 0 0 0 0 : | | | | | | | | : 1 1 2 2 2 1 1 2 : | | | | | | / \ / \ : 1 2 1 2 1 2 1 2 1 2 : | | | | | | : 2 1 1 1 2 1 : : 0 0 0 0 0 0 : / \ / \ / \ / \ / \ / \ : 1 1 2 1 1 2 2 2 1 2 2 1 : | | | | | | : 2 1 1 1 2 2 Triangle T(n,k) begins: 1; 0, 1; 0, 1, 3; 0, 2, 14, 16; 0, 3, 60, 174, 125; 0, 6, 254, 1434, 2464, 1296; 0, 12, 1087, 10746, 33362, 40455, 16807; 0, 25, 4742, 77556, 388312, 816535, 763104, 262144; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add( k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n-1), n=1..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n - j, k] Sum[k A[d, k] d * (-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n - 1}]/(n - 1)]; T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255517(n).