A256069 Number T(n,k) of inequivalent n X n matrices with entry set {1,...,k}, where equivalence means permutations of rows or columns; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 5, 0, 1, 34, 633, 0, 1, 315, 89544, 7520386, 0, 1, 5622, 64780113, 79587235420, 20435529209470, 0, 1, 251608, 302752112913, 9177112514843320, 28079504654455279395, 19740907671252532135134
Offset: 0
Examples
T(2,2) = 5: [1 1] [1 2] [1 2] [1 1] [1 2] [1 2] [2 2] [1 2] [2 2] [2 1]. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 5; 0, 1, 34, 633; 0, 1, 315, 89544, 7520386; 0, 1, 5622, 64780113, 79587235420, 20435529209470;
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [[]], `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]], b(n-i*j, i-1))[], j=1..n/i)])) end: A:= proc(n, k) option remember; add(add(k^add(add(i[2]*j[2]* igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s) /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..8);
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246106(n,k-i).