cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016041 Primes that are palindromic in base 2 (but written here in base 10).

Original entry on oeis.org

3, 5, 7, 17, 31, 73, 107, 127, 257, 313, 443, 1193, 1453, 1571, 1619, 1787, 1831, 1879, 4889, 5113, 5189, 5557, 5869, 5981, 6211, 6827, 7607, 7759, 7919, 8191, 17377, 18097, 18289, 19433, 19609, 19801, 21157, 22541, 22669, 22861, 23581, 24029
Offset: 1

Views

Author

Keywords

Comments

See A002385 for palindromic primes in base 10, and A256081 for primes whose binary expansion is "balanced" (see there) but not palindromic. - M. F. Hasler, Mar 14 2015
Number of terms less than 4^k, k=1,2,3,...: 1, 3, 5, 8, 11, 18, 30, 53, 93, 187, 329, 600, 1080, 1936, 3657, 6756, 12328, 23127, 43909, 83377, 156049, 295916, 570396, 1090772, 2077090, 3991187, 7717804, 14825247, 28507572, 54938369, 106350934, ..., partial sums of A095741 plus 1. - Robert G. Wilson v, Feb 23 2018, corrected by Jeppe Stig Nielsen, Jun 17 2023

Crossrefs

Intersection of A000040 and A006995.
First row of A095749.
A095741 gives the number of terms in range [2^(2n), 2^(2n+1)].
Cf. A095730 (primes whose Zeckendorf expansion is palindromic), A029971 (primes whose ternary (base-3) expansion is palindromic).
Cf. A117697 (written in base 2), A002385, A194097, A256081.

Programs

  • Magma
    [NthPrime(n): n in [1..5000] | (Intseq(NthPrime(n), 2) eq Reverse(Intseq(NthPrime(n), 2)))]; // Vincenzo Librandi, Feb 24 2018
    
  • Mathematica
    lst = {}; Do[ If[ PrimeQ@n, t = IntegerDigits[n, 2]; If[ FromDigits@t == FromDigits@ Reverse@ t, AppendTo[lst, n]]], {n, 3, 50000, 2}]; lst (* syntax corrected by Robert G. Wilson v, Aug 10 2009 *)
    pal2Q[n_] := Reverse[x = IntegerDigits[n, 2]] == x; Select[Prime[Range[2800]], pal2Q[#] &] (* Jayanta Basu, Jun 23 2013 *)
    genPal[n_Integer, base_Integer: 10] := Block[{id = IntegerDigits[n, base], insert = Join[{{}}, {# - 1} & /@ Range[base]]}, FromDigits[#, base] & /@ (Join[id, #, Reverse@id] & /@ insert)]; k = 0; lst = {}; While[k < 100, AppendTo[lst, Select[ genPal[k, 2], PrimeQ]]; lst = Flatten@ lst; k++]; lst (* Robert G. Wilson v, Feb 23 2018 *)
  • PARI
    is(n)=isprime(n)&&Vecrev(n=binary(n))==n \\ M. F. Hasler, Feb 23 2018
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(n) and (b:=bin(n)[2:]) == b[::-1]
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Apr 20 2024

Formula

Sum_{n>=1} 1/a(n) = A194097. - Amiram Eldar, Mar 19 2021

Extensions

More terms from Patrick De Geest

A256082 Non-palindromic balanced numbers in base 2.

Original entry on oeis.org

70, 78, 150, 266, 282, 294, 310, 334, 350, 355, 371, 397, 413, 540, 554, 582, 630, 686, 723, 798, 813, 1036, 1042, 1068, 1074, 1098, 1116, 1130, 1148, 1158, 1178, 1190, 1210, 1221, 1238, 1253, 1270, 1302, 1305, 1334, 1337, 1347, 1358, 1379, 1390, 1427, 1438, 1459, 1470, 1483, 1515, 1550, 1557, 1582, 1589, 1613, 1630
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the binary variant of the base-10 version A256075 invented by Eric Angelini. See A256081 for the primes in this sequence. See A256083 - A256089 and A256080 for variants in other bases.
If n is in the sequence with 2^d < n < 2^(d+1), then 2^(d+2)+2*n+1 is in the sequence, as are n*(2^k+1) for k > d. - Robert Israel, May 29 2018

Examples

			a(1) = 70 = 1000110[2] is balanced because 1*3 = 1*1 + 1*2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= convert(n,base,2);
      m:= (1+nops(L))/2;
      add(L[i]*(i-m),i=1..nops(L))=0 and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$2..10000]); # Robert Israel, May 29 2018
  • PARI
    is(n,b=2,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256076 Non-palindromic balanced primes.

Original entry on oeis.org

1823, 1933, 2141, 2251, 2633, 2963, 3061, 3391, 4091, 4253, 4363, 4583, 5393, 5717, 5827, 6637, 6857, 6967, 7829, 8147, 8419, 8969, 9067, 9397, 14303, 14503, 15013, 15313, 15413, 15913, 16223, 16823, 17033, 17333, 18043, 18143, 18443, 18743, 19553, 19753, 19853
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Palindromic primes (A002385) are "trivially" balanced, so they are excluded here.
These are the primes in A256075, see there for further information.
See A256081 for the binary version and A256090 for the hexadecimal version.

Examples

			a(1)=1823 is balanced because 1*3/2 + 8*1/2 = 2*1/2 + 3*3/2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= convert(n,base,10);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m),i=1..nops(L))=0  and isprime(n) and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [seq(i,i=1001..20000,2)]); # Robert Israel, May 29 2018
  • PARI
    is(n,d=digits(n),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)&&isprime(n)
Showing 1-3 of 3 results.