cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A256075 Non-palindromic balanced numbers (in base 10).

Original entry on oeis.org

1030, 1140, 1250, 1302, 1360, 1412, 1470, 1522, 1580, 1603, 1632, 1690, 1713, 1742, 1823, 1852, 1904, 1933, 1962, 2031, 2060, 2141, 2170, 2251, 2280, 2303, 2361, 2390, 2413, 2471, 2523, 2581, 2604, 2633, 2691, 2714, 2743, 2824, 2853, 2905, 2934, 2963, 3032, 3061, 3090, 3142, 3171, 3252, 3281, 3304, 3362, 3391, 3414
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
All 1-, 2- or 3-digit balanced numbers are palindromic, therefore all terms are larger than 1000.
The least 1-9 pandigital balanced number seems to be 137986542, but there seems to be no 0-9 pandigital balanced number.

Examples

			a(1)=1030 is balanced because 1*3/2 + 0*1/2 = 3*1/2 + 0*3/2.
a(2)=1140 is balanced because 1*3/2 + 1*1/2 = 4*1/2 + 0*3/2.
		

Crossrefs

Cf. A256076 (primes in this sequence), A256082 - A256089, A256080.

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= convert(n,base,10);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m),i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1000..10000]); # Robert Israel, May 29 2018
  • PARI
    is(n,b=10,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256082 Non-palindromic balanced numbers in base 2.

Original entry on oeis.org

70, 78, 150, 266, 282, 294, 310, 334, 350, 355, 371, 397, 413, 540, 554, 582, 630, 686, 723, 798, 813, 1036, 1042, 1068, 1074, 1098, 1116, 1130, 1148, 1158, 1178, 1190, 1210, 1221, 1238, 1253, 1270, 1302, 1305, 1334, 1337, 1347, 1358, 1379, 1390, 1427, 1438, 1459, 1470, 1483, 1515, 1550, 1557, 1582, 1589, 1613, 1630
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the binary variant of the base-10 version A256075 invented by Eric Angelini. See A256081 for the primes in this sequence. See A256083 - A256089 and A256080 for variants in other bases.
If n is in the sequence with 2^d < n < 2^(d+1), then 2^(d+2)+2*n+1 is in the sequence, as are n*(2^k+1) for k > d. - Robert Israel, May 29 2018

Examples

			a(1) = 70 = 1000110[2] is balanced because 1*3 = 1*1 + 1*2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,m;
      L:= convert(n,base,2);
      m:= (1+nops(L))/2;
      add(L[i]*(i-m),i=1..nops(L))=0 and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$2..10000]); # Robert Israel, May 29 2018
  • PARI
    is(n,b=2,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256080 Non-palindromic balanced numbers in base 16.

Original entry on oeis.org

4144, 4416, 4688, 4866, 4960, 5138, 5232, 5410, 5504, 5635, 5682, 5776, 5907, 5954, 6048, 6179, 6226, 6320, 6404, 6451, 6498, 6592, 6676, 6723, 6770, 6864, 6948, 6995, 7042, 7136, 7173, 7220, 7267, 7314, 7408, 7445, 7492, 7539, 7586, 7717, 7764, 7811, 7858, 7942, 7989
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Palindromes (A029730) are trivially balanced, therefore they are excluded here.
This is the hexadecimal variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.See A256090 for the primes in this sequence.

Crossrefs

Programs

  • PARI
    is(n,b=16,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256081 Non-palindromic balanced primes in base 2.

Original entry on oeis.org

397, 1427, 1459, 1483, 1613, 1693, 4657, 4721, 4931, 5077, 5273, 5581, 5651, 5749, 6043, 6329, 6637, 6701, 6791, 7127, 7211, 7547, 10069, 10937, 10979, 12011, 12757, 13597, 13789, 18121, 18217, 18307, 18947, 19013, 19141, 19237, 19267, 19813, 19861
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Obviously, all palindromic numbers are balanced; cf. A016041 for base-2 palindromic primes.
These are the primes in A256082. This is the binary variant of the decimal version A256076 suggested by Eric Angelini.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m;
      L:= convert(n, base, 2);
      m:= (1+nops(L))/2;
      add(L[i]*(i-m), i=1..nops(L))=0 and isprime(n) and L <> ListTools:-Reverse(L)
    end proc: select(filter, [seq(i,i=3..20000,2)]);# Robert Israel, May 29 2018
  • PARI
    is(n,b=2,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)&&isprime(n)

A256083 Non-palindromic balanced numbers in base 3.

Original entry on oeis.org

87, 96, 105, 137, 146, 155, 169, 178, 187, 264, 276, 312, 348, 380, 416, 452, 464, 508, 520, 556, 592, 741, 768, 795, 816, 831, 843, 858, 870, 885, 895, 906, 922, 933, 949, 960, 987, 991, 1014, 1018, 1041, 1045, 1055, 1077, 1082, 1104, 1109, 1131, 1141, 1145, 1168, 1172, 1195, 1199, 1226, 1237, 1253, 1264, 1280, 1291, 1301
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the base-3 variant of the decimal version A256075 invented by Eric Angelini.
All balanced numbers with less than 4 digits are palindromic, and since there is no digit 3 in base 3, there cannot be a term in this sequence with 4 base-3 digits, where weights are (-3/2, -1/2, 1/2, 3/2).

Examples

			a(4) = 137 = 12002[3] is balanced because 1*2 + 2*1 = 0*1 + 2*2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 3);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=3,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256088 Non-palindromic balanced numbers in base 8.

Original entry on oeis.org

536, 608, 680, 706, 752, 778, 824, 850, 899, 922, 971, 994, 1049, 1072, 1121, 1144, 1193, 1219, 1265, 1291, 1337, 1363, 1412, 1435, 1484, 1507, 1562, 1585, 1634, 1657, 1706, 1732, 1778, 1804, 1850, 1876, 1925, 1948, 1997
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Since palindromes (A029803) are trivially balanced, they are excluded here.
This is the base-8 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 8);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=8,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256084 Non-palindromic balanced numbers in base 4.

Original entry on oeis.org

76, 114, 141, 179, 206, 264, 280, 296, 312, 332, 348, 364, 380, 386, 402, 418, 434, 454, 470, 486, 502, 521, 537, 553, 569, 589, 605, 621, 637, 643, 659, 675, 691, 711, 727, 743, 759, 778, 794, 810, 826, 846, 862, 878, 894, 1060, 1096, 1140, 1176, 1221, 1256, 1320, 1329, 1356, 1400, 1410, 1436, 1481, 1490, 1516, 1554, 1580
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero.
This is the base-4 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 4);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=4,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256085 Non-palindromic balanced numbers in base 5.

Original entry on oeis.org

140, 170, 202, 232, 266, 296, 328, 358, 392, 422, 454, 484, 518, 548, 635, 660, 685, 710, 735, 765, 790, 815, 840, 865, 877, 895, 902, 920, 927, 945, 952, 970, 977, 995, 1007, 1032, 1057, 1082, 1107, 1128, 1137, 1153, 1162, 1178, 1187, 1203, 1212, 1228, 1237, 1261, 1270, 1286, 1295, 1311, 1320, 1336, 1345, 1361, 1370
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Since palindromes (A029952) are trivially balanced, they are excluded here.
This is the base-5 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 5);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=5,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)

A256086 Non-palindromic balanced numbers in base 6.

Original entry on oeis.org

234, 276, 318, 326, 368, 410, 451, 493, 535, 543, 585, 627, 668, 710, 752, 760, 802, 844, 885, 927, 969, 977, 1019, 1061, 1102, 1144, 1186, 1308, 1344, 1380, 1416, 1452, 1488, 1530, 1566, 1602, 1638, 1674, 1710, 1730, 1752, 1766, 1788, 1802, 1824, 1838, 1860, 1874, 1896, 1910, 1932, 1952, 1974, 1988
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Since palindromes (A029953) are trivially balanced, they are excluded here.
This is the base-6 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 6);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=6,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&d!=Vecrev(d)

A256087 Non-palindromic balanced numbers in base 7.

Original entry on oeis.org

364, 420, 476, 492, 532, 548, 604, 640, 660, 708, 728, 764, 820, 836, 876, 892, 948, 984, 1004, 1052, 1072, 1108, 1164, 1180, 1220, 1236, 1292, 1328, 1348, 1396, 1416, 1452, 1508, 1524, 1564, 1580, 1636, 1672, 1692, 1740, 1760, 1796, 1852, 1868, 1908, 1924, 1980
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2015

Keywords

Comments

Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Since palindromes (A029954) are trivially balanced, they are excluded here.
This is the base-7 variant of the decimal version A256075 invented by Eric Angelini. See there, and the base-2 version A256082, for further information and examples.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, m,i;
      L:= convert(n, base, 7);
      m:= (1+nops(L))/2;
    add(L[i]*(i-m), i=1..nops(L))=0  and L <> ListTools:-Reverse(L)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Nov 04 2024
  • PARI
    is(n,b=7,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)
Showing 1-10 of 11 results. Next