cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256095 Triangle of greatest common divisors of two triangular numbers (A000217).

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 6, 1, 3, 6, 10, 1, 1, 2, 10, 15, 1, 3, 3, 5, 15, 21, 1, 3, 3, 1, 3, 21, 28, 1, 1, 2, 2, 1, 7, 28, 36, 1, 3, 6, 2, 3, 3, 4, 36, 45, 1, 3, 3, 5, 15, 3, 1, 9, 45, 55, 1, 1, 1, 5, 5, 1, 1, 1, 5, 55, 66, 1, 3, 6, 2, 3, 3, 2, 6, 3, 11, 66, 78, 1, 3, 6, 2, 3, 3, 2, 6, 3, 1, 6, 78, 91, 1, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 13, 91, 105, 1, 3, 3, 5, 15, 21, 7, 3, 15, 5, 3, 3, 7, 105
Offset: 0

Views

Author

Wolfdieter Lang, Mar 17 2015

Keywords

Examples

			The triangle T(n, m) begins:
n\m   0 1 2 3  4  5  6  7  8  9 10 11 12 13  14
0:    0
1:    1 1
2:    3 1 3
3:    6 1 3 6
4:   10 1 1 2 10
5:   15 1 3 3  5 15
6:   21 1 3 3  1  3 21
7:   28 1 1 2  2  1  7 28
8:   36 1 3 6  2  3  3  4 36
9:   45 1 3 3  5 15  3  1  9 45
10:  55 1 1 1  5  5  1  1  1  5 55
11:  66 1 3 6  2  3  3  2  6  3 11 66
12:  78 1 3 6  2  3  3  2  6  3  1  6 78
13:  91 1 1 1  1  1  7  7  1  1  1  1 13 91
14: 105 1 3 3  5 15 21  7  3 15  5  3  3  7 105
...
		

Crossrefs

T(2n,n) gives A026741.

Programs

  • Maple
    T:= (i,j) -> igcd(i*(i+1)/2,j*(j+1)/2):
    seq(seq(T(i,j),j=0..i),i=0..20); # Robert Israel, Jan 20 2020
  • PARI
    tabl(nn) = {for (n=0, nn, trn = n*(n+1)/2; for (k=0, n, print1(gcd(trn, k*(k+1)/2), ", ");); print(););} \\ Michel Marcus, Mar 17 2015

Formula

T(n, m) = gcd(Tri(n), Tri(m)), 0 <= m <= n, with the triangular numbers Tri = A000217.
T(n, 0) = Tri(n) = T(n, n). T(n, 1) = 1, n >= 0.
Columns m=2: A144437(n-1), m=3: repeat(6, 2, 3, 3, 2, 6, 3, 1, 6, 6, 1, 3) (guess), m=4: repeat(10, 5, 1, 2, 2, 5, 5, 2, 2, 1, 5, 10, 2, 1, 1, 10, 10, 1, 1, 2) (guess), m=5 repeat(15, 3, 1, 3, 15, 5, 3, 3, 1, 15, 15, 1, 3, 3, 5) (guess), ...
From Robert Israel, Jan 21 2020: (Start) The guesses are correct. More generally, for each k>=1, T(n,k) is periodic in n with period 2*A000217(k) if k == 0 or 3 (mod 4), A000217(k) if k == 1 or 2 (mod 4). (End)