A256101 The broken eggs problem.
301, 721, 1141, 1561, 1981, 2401, 2821, 3241, 3661, 4081, 4501, 4921, 5341, 5761, 6181, 6601, 7021, 7441, 7861, 8281, 8701, 9121, 9541, 9961, 10381, 10801, 11221, 11641, 12061, 12481, 12901, 13321, 13741, 14161, 14581, 15001, 15421, 15841
Offset: 1
References
- H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 203.
- H. Hunger and K. Vogel, Ein byzantinisches Rechenbuch des 15.Jahrhunderts. 100 Aufgaben aus dem Codex Vindobonensis Phil. Gr. 65. (in Greek and German translation), Hermann Böhlaus Nachf., Wien, 1963 (Österr. Akad. d. Wiss., phil.-hist. Kl., Denkschriften, 78. Band, 2. Abhandlung), p. 73.
- J. Tropfke, Geschichte der Elementarmathematik, Band 1, Arithmetik und Algebra, 4. Auflage, Walter de Gruyter, Berlin, New York , 1980, p. 640.
Links
- Adam Hugill, Table of n, a(n) for n = 1..10000
- Bill Cherowitzo, Chinese remainder Theorem.
- Index entries for linear recurrences with constant coefficients, signature (2, -1).
Crossrefs
Cf. A017041.
Programs
-
Magma
[420*n-119: n in [1..40]]; // Vincenzo Librandi, Apr 11 2015
-
Maple
A256101:=n->420*n-119: seq(A256101(n), n=1..50); # Wesley Ivan Hurt, Apr 11 2015
-
Mathematica
CoefficientList[Series[(301 + 119 x) / (1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2015 *)
-
Python
terms=[] n=50 #terms here for i in range(1, n+1): ans=420*i-119 terms.append(ans) print(terms) # Adam Hugill, Feb 22 2022
Formula
a(n) = 420*n-119, n >= 1, (note that 420 = 3*4*5*7, with pairwise coprime factors needed for the Chinese remainder theorem).
a(n) = 60*A017041(n-1) + 1, n >= 1.
G.f.: x*7*(43+17*x)/(1-x)^2. [Corrected by Vincenzo Librandi, Apr 11 2015]
Extensions
Corrected G.f. rewritten. - Wolfdieter Lang, Apr 15 2015
Comments