A256116 Number T(n,k) of length 2n k-ary words, either empty or beginning with the first letter of the alphabet and using each letter at least once, that can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 2, 0, 1, 9, 10, 0, 1, 34, 112, 84, 0, 1, 125, 930, 1800, 1008, 0, 1, 461, 7018, 26400, 35640, 15840, 0, 1, 1715, 51142, 334152, 816816, 840840, 308880, 0, 1, 6434, 368464, 3944220, 15550080, 27824160, 23063040, 7207200
Offset: 0
Examples
T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba. T(3,3) = 10: aabbcc, aabccb, aacbbc, aaccbb, abbacc, abbcca, abccba, acbbca, accabb, accbba. T(4,2) = 34: aaaaaabb, aaaaabba, aaaabaab, aaaabbaa, aaaabbbb, aaabaaba, aaabbaaa, aaabbabb, aaabbbba, aabaaaab, aabaabaa, aabaabbb, aababbab, aabbaaaa, aabbaabb, aabbabba, aabbbaab, aabbbbaa, aabbbbbb, abaaaaba, abaabaaa, abaababb, abaabbba, ababbaba, abbaaaaa, abbaaabb, abbaabba, abbabaab, abbabbaa, abbabbbb, abbbaaba, abbbbaaa, abbbbabb, abbbbbba. T(4,4) = 84: aabbccdd, aabbcddc, aabbdccd, aabbddcc, aabccbdd, aabccddb, aabcddcb, aabdccdb, aabddbcc, aabddccb, aacbbcdd, aacbbddc, aacbddbc, aaccbbdd, aaccbddb, aaccdbbd, aaccddbb, aacdbbdc, aacddbbc, aacddcbb, aadbbccd, aadbbdcc, aadbccbd, aadcbbcd, aadccbbd, aadccdbb, aaddbbcc, aaddbccb, aaddcbbc, aaddccbb, abbaccdd, abbacddc, abbadccd, abbaddcc, abbccadd, abbccdda, abbcddca, abbdccda, abbddacc, abbddcca, abccbadd, abccbdda, abccddba, abcddcba, abdccdba, abddbacc, abddbcca, abddccba, acbbcadd, acbbcdda, acbbddca, acbddbca, accabbdd, accabddb, accadbbd, accaddbb, accbbadd, accbbdda, accbddba, accdbbda, accddabb, accddbba, acdbbdca, acddbbca, acddcabb, acddcbba, adbbccda, adbbdacc, adbbdcca, adbccbda, adcbbcda, adccbbda, adccdabb, adccdbba, addabbcc, addabccb, addacbbc, addaccbb, addbbacc, addbbcca, addbccba, addcbbca, addccabb, addccbba. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 1, 9, 10; 0, 1, 34, 112, 84; 0, 1, 125, 930, 1800, 1008; 0, 1, 461, 7018, 26400, 35640, 15840; 0, 1, 1715, 51142, 334152, 816816, 840840, 308880;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, k/n* add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/ `if`(k=0, 1, k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
Unprotect[Power]; 0^0 = 1; A[n_, k_] := A[n, k] = If[n==0, 1, k/n*Sum[ Binomial[2*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k==0, 1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)