A183135
Square array A(n,k) by antidiagonals. A(n,k) is the number of length 2n k-ary words (n,k>=0) that can be built by repeatedly inserting doublets into the initially empty word.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 87, 70, 1, 0, 1, 6, 45, 232, 543, 252, 1, 0, 1, 7, 66, 485, 2092, 3543, 924, 1, 0, 1, 8, 91, 876, 5725, 19864, 23823, 3432, 1, 0, 1, 9, 120, 1435, 12786, 71445, 195352, 163719, 12870, 1, 0
Offset: 0
A(2,2) = 6, because 6 words of length 4 can be built over 2-letter alphabet {a, b} by repeatedly inserting doublets (words with two equal letters) into the initially empty word: aaaa, aabb, abba, baab, bbaa, bbbb.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 6, 15, 28, 45, ...
0, 1, 20, 87, 232, 485, ...
0, 1, 70, 543, 2092, 5725, ...
0, 1, 252, 3543, 19864, 71445, ...
Columns k=0-10 give:
A000007,
A000012,
A000984,
A089022,
A035610,
A130976,
A130977,
A130978,
A130979,
A130980,
A131521.
Coefficients of row polynomials in k, (k-1) are given by
A157491,
A039599.
-
A:= proc(n, k) local j;
if n=0 then 1
else k/n *add(binomial(2*n,j) *(n-j) *(k-1)^j, j=0..n-1)
fi
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A[, 1] = 1; A[n, k_] := If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*(k - 1)^j, {j, 0, n - 1}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
A256117
Number T(n,k) of length 2n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 9, 5, 0, 1, 34, 56, 14, 0, 1, 125, 465, 300, 42, 0, 1, 461, 3509, 4400, 1485, 132, 0, 1, 1715, 25571, 55692, 34034, 7007, 429, 0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430, 0, 1, 24309, 1325609, 7488228, 11187462, 6191808, 1447992, 143208, 4862
Offset: 0
T(0,0) = 1: (the empty word).
T(1,1) = 1: aa.
T(2,1) = 1: aaaa.
T(2,2) = 2: aabb, abba.
T(3,1) = 1: aaaaaa.
T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
T(3,3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 9, 5;
0, 1, 34, 56, 14;
0, 1, 125, 465, 300, 42;
0, 1, 461, 3509, 4400, 1485, 132;
0, 1, 1715, 25571, 55692, 34034, 7007, 429;
0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430;
...
Columns k=0-10 give:
A000007,
A057427,
A010763(n-1) (for n>1),
A258490,
A258491,
A258492,
A258493,
A258494,
A258495,
A258496,
A258497.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
end:
T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz, updated Jan 01 2021 *)
A065866
a(n) = n! * Catalan(n+1).
Original entry on oeis.org
1, 2, 10, 84, 1008, 15840, 308880, 7207200, 196035840, 6094932480, 213322636800, 8303173401600, 355850288640000, 16653793508352000, 845180020548864000, 46236318771202560000, 2712530701243883520000, 169890080762116915200000, 11314679378756986552320000
Offset: 0
G.f. = 1 + 2*x + 10*x^2 + 84*x^3 + 1008*x^4 + 15840*x^5 + 308880*x^6 + ...
- R. L. Graham, D. E. Knuth, and O. Patashnik, "Concrete Mathematics", Addison-Wesley, 1994, pp. 200-204.
-
List([0..20], n-> 2*Factorial(2*n+1)/Factorial(n+2)); # G. C. Greubel, Mar 19 2019
-
[Factorial(n)*Catalan(n+1): n in [0..20]]; // G. C. Greubel, Mar 19 2019
-
with(combstruct): ZL:=[T, {T=Union(Z, Prod(Epsilon, Z, T), Prod(T, Z, Epsilon), Prod(T, T, Z))}, labeled]: seq(count(ZL, size=i+1)/(i+1), i=0..18); # Zerinvary Lajos, Dec 16 2007
a := n -> (2^(2*n+2)*GAMMA(n+3/2))/(sqrt(Pi)*(n+1)*(n+2)):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Mar 20 2019
-
Table[2*(2n+1)!/(n+2)!, {n,0,20}] (* G. C. Greubel, Mar 19 2019 *)
Table[n! CatalanNumber[n+1],{n,0,20}] (* Harvey P. Dale, Feb 02 2023 *)
-
{ for (n = 0, 100, a = 2 * (2*n + 1)!/(n + 2)!; write("b065866.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 02 2009
-
[factorial(n)*catalan_number(n+1) for n in (0..20)] # G. C. Greubel, Mar 19 2019
A294603
Number of words of semilength n over n-ary alphabet, either empty or beginning with the first letter of the alphabet, such that the index set of occurring letters is an integer interval [1, k], that can be built by repeatedly inserting doublets into the initially empty word.
Original entry on oeis.org
1, 1, 3, 20, 231, 3864, 85360, 2353546, 77963599, 3019479344, 133966276692, 6702399275538, 373406941221160, 22930441709648290, 1539004344848618466, 112089683771614695478, 8805334896381292460191, 742162775145283382779168, 66809386370870410069346476
Offset: 0
a(0) = 1: the empty word.
a(1) = 1: aa.
a(2) = 3: aaaa, aabb, abba.
a(3) = 20: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, aabbcc, aabccb, aacbbc, aaccbb, abaaba, abbaaa, abbabb, abbacc, abbbba, abbcca, abccba, acbbca, accabb, accbba.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/`if`(k=0, 1, k)
end:
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..20);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*
Sum[Binomial[2*n, j]*(n-j) *If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
T[n_, k_] := T[n, k] =
Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k == 0, 1, k];
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments