cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256116 Number T(n,k) of length 2n k-ary words, either empty or beginning with the first letter of the alphabet and using each letter at least once, that can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 9, 10, 0, 1, 34, 112, 84, 0, 1, 125, 930, 1800, 1008, 0, 1, 461, 7018, 26400, 35640, 15840, 0, 1, 1715, 51142, 334152, 816816, 840840, 308880, 0, 1, 6434, 368464, 3944220, 15550080, 27824160, 23063040, 7207200
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2015

Keywords

Examples

			T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
T(3,3) = 10: aabbcc, aabccb, aacbbc, aaccbb, abbacc, abbcca, abccba, acbbca, accabb, accbba.
T(4,2) = 34: aaaaaabb, aaaaabba, aaaabaab, aaaabbaa, aaaabbbb, aaabaaba, aaabbaaa, aaabbabb, aaabbbba, aabaaaab, aabaabaa, aabaabbb, aababbab, aabbaaaa, aabbaabb, aabbabba, aabbbaab, aabbbbaa, aabbbbbb, abaaaaba, abaabaaa, abaababb, abaabbba, ababbaba, abbaaaaa, abbaaabb, abbaabba, abbabaab, abbabbaa, abbabbbb, abbbaaba, abbbbaaa, abbbbabb, abbbbbba.
T(4,4) = 84: aabbccdd, aabbcddc, aabbdccd, aabbddcc, aabccbdd, aabccddb, aabcddcb, aabdccdb, aabddbcc, aabddccb, aacbbcdd, aacbbddc, aacbddbc, aaccbbdd, aaccbddb, aaccdbbd, aaccddbb, aacdbbdc, aacddbbc, aacddcbb, aadbbccd, aadbbdcc, aadbccbd, aadcbbcd, aadccbbd, aadccdbb, aaddbbcc, aaddbccb, aaddcbbc, aaddccbb, abbaccdd, abbacddc, abbadccd, abbaddcc, abbccadd, abbccdda, abbcddca, abbdccda, abbddacc, abbddcca, abccbadd, abccbdda, abccddba, abcddcba, abdccdba, abddbacc, abddbcca, abddccba, acbbcadd, acbbcdda, acbbddca, acbddbca, accabbdd, accabddb, accadbbd, accaddbb, accbbadd, accbbdda, accbddba, accdbbda, accddabb, accddbba, acdbbdca, acddbbca, acddcabb, acddcbba, adbbccda, adbbdacc, adbbdcca, adbccbda, adcbbcda, adccbbda, adccdabb, adccdbba, addabbcc, addabccb, addacbbc, addaccbb, addbbacc, addbbcca, addbccba, addcbbca, addccabb, addccbba.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,    2;
  0, 1,    9,    10;
  0, 1,   34,   112,     84;
  0, 1,  125,   930,   1800,   1008;
  0, 1,  461,  7018,  26400,  35640,  15840;
  0, 1, 1715, 51142, 334152, 816816, 840840, 308880;
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A010763(n-1) for n>0.
Main diagonal gives A065866(n-1) (for n>0).
Row sums give A294603.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/
        `if`(k=0, 1, k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := A[n, k] = If[n==0, 1, k/n*Sum[ Binomial[2*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]];
    T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k==0, 1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

T(n,k) = (Sum_{i=0..k} (-1)^i * C(k,i) * A183135(n,k-i)) / A028310(k).
T(n,k) = (k-1)! * A256117(n,k) for k > 0.

A258498 Number of words of length 2n such that the index set of occurring letters is {1, 2, ..., k}, all letters are introduced in ascending order, and the words can be built by repeatedly inserting doublets into the initially empty word.

Original entry on oeis.org

1, 1, 3, 15, 105, 933, 9988, 124449, 1761287, 27813479, 483482018, 9153385959, 187129080977, 4102129113670, 95861136747795, 2376234441556411, 62216635372018209, 1714347701138957189, 49553280367466054768, 1498300016807379304877, 47270249397381096576643
Offset: 0

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Examples

			a(3) = 15: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba, aabbcc, aabccb, abbacc, abbcca, abccba.
		

Crossrefs

Row sums of A256117.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
        end:
    T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
    a:= n-> add(T(n, k), k=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
    T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A256117(n,k).
a(n) ~ Bell(n-1)*Catalan(n) ~ n^n * exp(n/LambertW(n)-1-n) * 4^n / (sqrt(Pi) * sqrt(1+LambertW(n)) * LambertW(n)^(n-1) * n^(5/2)). - Vaclav Kotesovec, Jun 02 2015
Showing 1-2 of 2 results.