cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256117 Number T(n,k) of length 2n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 9, 5, 0, 1, 34, 56, 14, 0, 1, 125, 465, 300, 42, 0, 1, 461, 3509, 4400, 1485, 132, 0, 1, 1715, 25571, 55692, 34034, 7007, 429, 0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430, 0, 1, 24309, 1325609, 7488228, 11187462, 6191808, 1447992, 143208, 4862
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2015

Keywords

Comments

In general, column k>2 is asymptotic to (4*(k-1))^n / ((k-2)^2 * (k-2)! * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 01 2015

Examples

			T(0,0) = 1: (the empty word).
T(1,1) = 1: aa.
T(2,1) = 1: aaaa.
T(2,2) = 2: aabb, abba.
T(3,1) = 1: aaaaaa.
T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
T(3,3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,    2;
  0, 1,    9,      5;
  0, 1,   34,     56,     14;
  0, 1,  125,    465,    300,     42;
  0, 1,  461,   3509,   4400,   1485,    132;
  0, 1, 1715,  25571,  55692,  34034,   7007,   429;
  0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A057427, A010763(n-1) (for n>1), A258490, A258491, A258492, A258493, A258494, A258495, A258496, A258497.
Main diagonal gives A000108.
T(n+2,n+1) gives A002055(n+5).
Row sums give A258498.
T(2n,n) gives A258499.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
        end:
    T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
    T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz, updated Jan 01 2021 *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * A183135(n,k-i) / (i!*(k-i)!).
T(n,k) = A256116(n,k) / (k-1)! for k > 0.

A294603 Number of words of semilength n over n-ary alphabet, either empty or beginning with the first letter of the alphabet, such that the index set of occurring letters is an integer interval [1, k], that can be built by repeatedly inserting doublets into the initially empty word.

Original entry on oeis.org

1, 1, 3, 20, 231, 3864, 85360, 2353546, 77963599, 3019479344, 133966276692, 6702399275538, 373406941221160, 22930441709648290, 1539004344848618466, 112089683771614695478, 8805334896381292460191, 742162775145283382779168, 66809386370870410069346476
Offset: 0

Views

Author

Alois P. Heinz, Nov 03 2017

Keywords

Examples

			a(0) = 1: the empty word.
a(1) = 1: aa.
a(2) = 3: aaaa, aabb, abba.
a(3) = 20: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, aabbcc, aabccb, aacbbc, aaccbb, abaaba, abbaaa, abbabb, abbacc, abbbba, abbcca, abccba, acbbca, accabb, accbba.
		

Crossrefs

Row sums of A256116.
Cf. A258498.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/`if`(k=0, 1, k)
        end:
    a:= n-> add(T(n, k), k=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*
         Sum[Binomial[2*n, j]*(n-j) *If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
    T[n_, k_] := T[n, k] =
         Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k == 0, 1, k];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A256116(n,k).

A321031 Number of words of length 3n such that the index set of occurring letters is {1, 2, ..., k}, all letters are introduced in ascending order, and the words can be built by repeatedly inserting triples into the initially empty word.

Original entry on oeis.org

1, 1, 4, 31, 351, 5144, 91816, 1918578, 45687682, 1216354021, 35689352250, 1141323078031, 39429988969021, 1461049507764175, 57720478019188989, 2419008380691088543, 107083662651332423339, 4988596265684542112304, 243781041304397011647766
Offset: 0

Views

Author

Alois P. Heinz, Oct 26 2018

Keywords

Examples

			a(2) = 4: aaaaaa, aaabbb, aabbba, abbbaa.
		

Crossrefs

Row sums of A256311.
Cf. A258498.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(add((-1)^i*(k-i)/n*add(binomial(3*n, j)
          *(n-j)*(k-i-1)^j, j=0..n-1)/(i!*(k-i)!), i=0..k), k=0..n)):
    seq(a(n), n=0..20);
Showing 1-3 of 3 results.