cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256311 Number T(n,k) of length 3n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 18, 12, 0, 1, 97, 198, 55, 0, 1, 530, 2520, 1820, 273, 0, 1, 2973, 29886, 42228, 15300, 1428, 0, 1, 17059, 347907, 859180, 564585, 122094, 7752, 0, 1, 99657, 4048966, 16482191, 17493938, 6577494, 942172, 43263
Offset: 0

Views

Author

Alois P. Heinz, Mar 25 2015

Keywords

Examples

			T(0,0) = 1: (the empty word).
T(1,1) = 1: aaa.
T(2,1) = 1: aaaaaa.
T(2,2) = 3: aaabbb, aabbba, abbbaa.
T(3,1) = 1: aaaaaaaaa.
T(3,2) = 18: aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
T(3,3) = 12: aaabbbccc, aaabbcccb, aaabcccbb, aabbbaccc, aabbbccca, aabbcccba, aabcccbba, abbbaaccc, abbbaccca, abbbcccaa, abbcccbaa, abcccbbaa.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,     3;
  0, 1,    18,     12;
  0, 1,    97,    198,     55;
  0, 1,   530,   2520,   1820,    273;
  0, 1,  2973,  29886,  42228,  15300,   1428;
  0, 1, 17059, 347907, 859180, 564585, 122094, 7752;
		

Crossrefs

Row sums give A321031.
Main diagonal gives A001764.
T(2n,n) gives A321041.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 1,
        k/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1)):
    T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * A213028(n,k-i) / (i!*(k-i)!).

A258498 Number of words of length 2n such that the index set of occurring letters is {1, 2, ..., k}, all letters are introduced in ascending order, and the words can be built by repeatedly inserting doublets into the initially empty word.

Original entry on oeis.org

1, 1, 3, 15, 105, 933, 9988, 124449, 1761287, 27813479, 483482018, 9153385959, 187129080977, 4102129113670, 95861136747795, 2376234441556411, 62216635372018209, 1714347701138957189, 49553280367466054768, 1498300016807379304877, 47270249397381096576643
Offset: 0

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Examples

			a(3) = 15: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba, aabbcc, aabccb, abbacc, abbcca, abccba.
		

Crossrefs

Row sums of A256117.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
          add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
        end:
    T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
    a:= n-> add(T(n, k), k=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
    T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} A256117(n,k).
a(n) ~ Bell(n-1)*Catalan(n) ~ n^n * exp(n/LambertW(n)-1-n) * 4^n / (sqrt(Pi) * sqrt(1+LambertW(n)) * LambertW(n)^(n-1) * n^(5/2)). - Vaclav Kotesovec, Jun 02 2015
Showing 1-2 of 2 results.