A183134
Square array A(n,k) by antidiagonals. A(n,k) is the number of length 2n k-ary words (n,k>=0), either empty or beginning with the first character of the alphabet, that can be built by repeatedly inserting doublets into the initially empty word.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 10, 1, 0, 1, 1, 7, 29, 35, 1, 0, 1, 1, 9, 58, 181, 126, 1, 0, 1, 1, 11, 97, 523, 1181, 462, 1, 0, 1, 1, 13, 146, 1145, 4966, 7941, 1716, 1, 0, 1, 1, 15, 205, 2131, 14289, 48838, 54573, 6435, 1, 0
Offset: 0
A(3,2) = 10, because 10 words of length 6 beginning with the first character of the 2-letter alphabet {a, b} can be built by repeatedly inserting doublets (words with two equal letters) into the initially empty word: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 3, 5, 7, 9, ...
0, 1, 10, 29, 58, 97, ...
0, 1, 35, 181, 523, 1145, ...
0, 1, 126, 1181, 4966, 14289, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- C. Kassel and C. Reutenauer, Algebraicity of the zeta function associated to a matrix over a free group algebra, arXiv preprint arXiv:1303.3481, 2013
- A. Lakshminarayan, Z. Puchala, K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169, 2014
Rows 0-10 give:
A000012,
A057427,
A004273,
A079273(k) for k>0,
A194716,
A194717,
A194718,
A194719,
A194720,
A194721,
A194722.
Columns 0-10 give:
A000007,
A000012,
A001700(n-1) for n>0,
A194723,
A194724,
A194725,
A194726,
A194727,
A194728,
A194729,
A194730.
Coefficients of row polynomials for k>0 in k, (k+1) are given by
A050166,
A157491.
-
A:= proc(n, k)
local j;
if n=0 then 1
elif k<=1 then k
else add(binomial(2*n,j)*(n-j)*(k-1)^j, j=0..n-1)/n
fi
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
a[n_, k_] := If[ n == 0, 1 , If[ k <= 1, k, Sum [Binomial[2*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}] / n ] ]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A256117
Number T(n,k) of length 2n words such that all letters of the k-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 9, 5, 0, 1, 34, 56, 14, 0, 1, 125, 465, 300, 42, 0, 1, 461, 3509, 4400, 1485, 132, 0, 1, 1715, 25571, 55692, 34034, 7007, 429, 0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430, 0, 1, 24309, 1325609, 7488228, 11187462, 6191808, 1447992, 143208, 4862
Offset: 0
T(0,0) = 1: (the empty word).
T(1,1) = 1: aa.
T(2,1) = 1: aaaa.
T(2,2) = 2: aabb, abba.
T(3,1) = 1: aaaaaa.
T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
T(3,3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 9, 5;
0, 1, 34, 56, 14;
0, 1, 125, 465, 300, 42;
0, 1, 461, 3509, 4400, 1485, 132;
0, 1, 1715, 25571, 55692, 34034, 7007, 429;
0, 1, 6434, 184232, 657370, 647920, 231868, 32032, 1430;
...
Columns k=0-10 give:
A000007,
A057427,
A010763(n-1) (for n>1),
A258490,
A258491,
A258492,
A258493,
A258494,
A258495,
A258496,
A258497.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k/n*
add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))
end:
T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];
T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz, updated Jan 01 2021 *)
A213027
Number A(n,k) of 3n-length k-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word; square array A(n,k), n>=0, k>=0, by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 7, 19, 1, 0, 1, 1, 10, 61, 98, 1, 0, 1, 1, 13, 127, 591, 531, 1, 0, 1, 1, 16, 217, 1810, 6101, 2974, 1, 0, 1, 1, 19, 331, 4085, 27631, 65719, 17060, 1, 0, 1, 1, 22, 469, 7746, 82593, 441604, 729933, 99658, 1, 0
Offset: 0
A(0,k) = 1: the empty word.
A(n,1) = 1: (aaa)^n.
A(2,2) = 4: there are 4 words of length 6 over alphabet {a,b}, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word: aaaaaa, aaabbb, aabbba, abbbaa.
A(2,3) = 7: aaaaaa, aaabbb, aaaccc, aabbba, aaccca, abbbaa, acccaa.
A(3,2) = 19: aaaaaaaaa, aaaaaabbb, aaaaabbba, aaaabbbaa, aaabaaabb, aaabbaaab, aaabbbaaa, aaabbbbbb, aabaaabba, aabbaaaba, aabbbaaaa, aabbbabbb, aabbbbbba, abaaabbaa, abbaaabaa, abbbaaaaa, abbbaabbb, abbbabbba, abbbbbbaa.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, ...
0, 1, 4, 7, 10, 13, 16, ...
0, 1, 19, 61, 127, 217, 331, ...
0, 1, 98, 591, 1810, 4085, 7746, ...
0, 1, 531, 6101, 27631, 82593, 195011, ...
0, 1, 2974, 65719, 441604, 1751197, 5153626, ...
Columns k=0-10 give:
A000007,
A000012,
A047099,
A218473,
A218474,
A218475,
A218476,
A218477,
A218478,
A218479,
A218480.
-
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k,
1/n *add(binomial(3*n, j) *(n-j) *(k-1)^j, j=0..n-1))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[0, ] = 1; a[, k_ /; k < 2] := k; a[n_, k_] := 1/n*Sum[Binomial[3*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]; Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
A089022
Number of walks of length 2n on the 3-regular tree beginning and ending at some fixed vertex.
Original entry on oeis.org
1, 3, 15, 87, 543, 3543, 23823, 163719, 1143999, 8099511, 57959535, 418441191, 3043608351, 22280372247, 164008329423, 1213166815047, 9012417249663, 67208553680247, 502920171632943, 3775020828459687, 28415858155984863, 214444848602732247, 1622146752543427983
Offset: 0
a(2) = 15 because there are 3*3=9 walks whose second step is to return to the starting vertex and 3*2=6 walks whose second step is to move away from the starting vertex.
-
A000602 := x -> 2^x*binomial(2*x, x)-9^x+1/3*2^x*binomial(2*x, x) * hypergeom([1, 2*x+1], [x+1], 2/3); # Tobias Friedrich (tfried(AT)mpi-inf.mpg.de), Jun 12 2007
-
Table[2^n*Binomial[2*n,n]-3^(n-1)*Sum[(2/3)^k*Binomial[n+k,n],{k,0,n-1}],{n,0,20}] (* or *)
CoefficientList[Series[4/(1+3*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
my(x='x+O('x^30)); Vec(4/(1+3*sqrt(1-8*x))) \\ Joerg Arndt, May 10 2013
A035610
G.f.: 3/(1 + 2*sqrt(1-12*x)).
Original entry on oeis.org
1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823800, 2240795848, 23951289520, 258255469816, 2805534253552, 30675477376432, 337306474674592, 3727578443380492, 41376874025687032, 461121792658583272, 5157384457905440752, 57869888433073055272, 651266142688270063312, 7349148747954997832272
Offset: 0
a(2)=28 because there are 4*4=16 walks whose second step is to return to the starting vertex and 4*3=12 walks whose second step is to move away from the starting vertex.
- Robert Israel, Table of n, a(n) for n = 0..837
- Murray Elder, Table of n, b(n) for n = 0..200, where b(n) is mentioned in a comment above.
- Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
- M. Elder and A. Rechnitzer, T. Wong, On the cogrowth of Thompson's group F, Groups, Complexity, Cryptology 4(2) (2012), 301-320.
- Pakawut Jiradilok and Supanat Kamtue, Transportation Distance between Probability Measures on the Infinite Regular Tree, arXiv:2107.09876 [math.CO], 2021.
- J. Novak, Three lectures on free probability, arXiv preprint arXiv:1205.2097, 2012. - _N. J. A. Sloane_, Oct 15 2012
- Gregory Quenell, Combinatorics of free product graphs, Contemp. Math (1994) 257-281 (Eq. 19).
- Ian M. Wanless, Counting Matchings and Tree-Like Walks in Regular Graphs, Combinatorics, Probability and Computing (2010) 19, 463-480 (Lemma 3.1).
-
a:= n-> `if`(n=0, 1, 4/n*add(binomial(2*n, j) *(n-j)*3^j, j=0..n-1)):
seq(a(n), n=0..20);
# Alternative:
f:= gfun:-rectoproc({(-192*n-288)*a(n+1)+(28*n+66)*a(n+2)+(-n-3)*a(n+3)=0,a(0)=1,a(1)=4,a(2)=28},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jul 06 2015
-
CoefficientList[ Series[3/(1 + 2Sqrt[1 - 12x]), {x, 0, 19}], x] (* Robert G. Wilson v, Nov 12 2003 *)
-
x='x+O('x^66); Vec(3/(1+2*sqrt(1-12*x))) \\ Joerg Arndt, Sep 06 2014
A130976
G.f.: 8/(3 + 5*sqrt(1-16*x)).
Original entry on oeis.org
1, 5, 45, 485, 5725, 71445, 925965, 12335685, 167817405, 2321105525, 32536755565, 461181239205, 6598203881245, 95157851939285, 1381842797170125, 20187779510360325, 296499276685062525, 4375281190871356725, 64836419120040890925
Offset: 0
-
a:= n-> `if`(n=0, 1, 5/n*add(binomial(2*n, j) *(n-j)*4^j, j=0..n-1)):
seq(a(n), n=0..20);
-
CoefficientList[Series[8/(3+5*Sqrt[1-16*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
A130977
G.f.: 5/(2 + 3*sqrt(1-20*x)).
Original entry on oeis.org
1, 6, 66, 876, 12786, 197796, 3183156, 52718616, 892401426, 15368638836, 268388185596, 4741271556456, 84573471344916, 1521119577791976, 27554494253636136, 502257203287150896, 9205363627419463506
Offset: 0
-
CoefficientList[Series[5/(2+3*Sqrt[1-20*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
A130978
G.f.: 12/(5 + 7*sqrt(1-24*x)).
Original entry on oeis.org
1, 7, 91, 1435, 24955, 460747, 8859739, 175466347, 3553964155, 73266506635, 1532152991131, 32420721097387, 692865048943291, 14932919812627915, 324195908270339035, 7083228794200550635
Offset: 0
-
g:=12/(5+7*sqrt(1-24*x));gser:=series(g,x=0,20); seq(coeff(gser,x,n),n=0..15); # Emeric Deutsch, Aug 26 2007
-
CoefficientList[Series[12/(5+7*Sqrt[1-24*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
A130979
G.f.: 7/(3 + 4*sqrt(1-28*x)).
Original entry on oeis.org
1, 8, 120, 2192, 44248, 949488, 21237168, 489517344, 11544312984, 277190766896, 6753051796240, 166505875155936, 4146984734796016, 104174408364697952, 2636346768784492128, 67149645964991840832, 1720072455615130558488
Offset: 0
-
CoefficientList[Series[7/(3 + 4*Sqrt[1 - 28*x]), {x,0,50}], x] (* G. C. Greubel, Jan 28 2017 *)
-
Vec(7/(3 + 4*sqrt(1-28*x)) + O(x^50)) \\ G. C. Greubel, Jan 28 2017
A130980
G.f.: 16/(7 + 9*sqrt(1 - 32*x)).
Original entry on oeis.org
1, 9, 153, 3177, 73017, 1785609, 45543897, 1197639081, 32231934585, 883404542025, 24570973169433, 691759954058985, 19674867844155321, 564462038150345097, 16315646312285498457, 474680922491822688297
Offset: 0
-
CoefficientList[Series[16/(7+9*Sqrt[1-32*x]),{x,0,30}],x] (* Harvey P. Dale, Feb 21 2013 *)
-
Vec(16/(7 + 9*sqrt(1-32*x)) + O(x^50)) \\ G. C. Greubel, Jan 28 2017
Showing 1-10 of 14 results.
Comments