cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256128 Decimal expansion of the third Malmsten integral: int_{x=1..infinity} log(log(x))/(1 - x + x^2) dx, negated.

Original entry on oeis.org

6, 7, 1, 7, 1, 9, 6, 0, 1, 8, 8, 5, 8, 7, 4, 5, 4, 2, 3, 5, 4, 4, 0, 5, 0, 6, 9, 2, 8, 8, 7, 7, 9, 8, 8, 4, 0, 0, 8, 8, 0, 2, 0, 6, 6, 2, 1, 9, 3, 5, 6, 3, 3, 2, 0, 5, 3, 6, 1, 6, 7, 3, 3, 7, 5, 1, 2, 5, 1, 2, 1, 7, 1, 7, 5, 8, 6, 1, 9, 0, 2, 1, 8, 3, 2, 6, 7, 1, 2, 6, 8, 6, 2, 9, 3, 2, 3, 7, 2, 3, 5, 5, 0, 3, 6
Offset: 0

Views

Author

Keywords

Examples

			-0.671719601885874542354405069288779884008802066219356...
		

Crossrefs

Cf. A115252 (first Malmsten integral), A256127 (second Malmsten integral), A256129 (fourth Malmsten integral), A073005 (Gamma(1/3)), A002162 (log 2), A002391 (log 3), A053510 (log Pi), A002194 (sqrt 3).

Programs

  • Maple
    evalf(Pi*(7*log(2)+8*log(Pi)-3*log(3)-12*log(GAMMA(1/3)))/(3*sqrt(3)),120); # Vaclav Kotesovec, Mar 17 2015
  • Mathematica
    RealDigits[Pi*(7*Log[2]+8*Log[Pi]-3*Log[3]-12*Log[Gamma[1/3]])/(3*Sqrt[3]),10,105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
  • PARI
    Pi*(7*log(2)+8*log(Pi)-3*log(3)-12*log(gamma(1/3)))/(3*sqrt(3)) \\ Michel Marcus, Mar 18 2015

Formula

Equals integral_{x=0..1} log(log(1/x))/(1 - x + x^2) dx.
Equals integral_{x=0..infinity} log(x)/(1 - 2*cosh(x)) dx.
Equals Pi*(7*log(2) + 8*log(Pi) - 3*log(3) - 12*log(Gamma(1/3)))/(3*sqrt(3)).