A256129 Decimal expansion of the fourth Malmsten integral: int_{x=1..infinity} log(log(x))/(1 + x)^2 dx, negated.
0, 6, 2, 8, 1, 6, 4, 7, 9, 8, 0, 6, 0, 3, 8, 9, 9, 7, 9, 4, 0, 1, 5, 8, 4, 3, 0, 0, 9, 3, 7, 6, 0, 1, 4, 3, 7, 3, 5, 1, 8, 2, 3, 2, 8, 6, 9, 2, 4, 3, 3, 6, 4, 0, 7, 0, 6, 4, 1, 2, 0, 8, 6, 4, 5, 3, 0, 6, 1, 7, 8, 9, 4, 3, 1, 2, 6, 6, 6, 5, 3, 3, 7, 9, 5, 9, 3, 5, 6, 0, 0, 0, 6, 3, 3, 7, 8, 6, 4, 6, 7, 7, 3, 1, 1, 5, 5, 8
Offset: 0
Examples
-0.0628164798060389979401584300937601437351823286924336...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Iaroslav V. Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. PDF file
- Wikipedia, Carl Malmsten
Crossrefs
Programs
-
Maple
evalf((log(Pi/2)-gamma)/2,120); # Vaclav Kotesovec, Mar 17 2015
-
Mathematica
RealDigits[(Log[Pi/2]-EulerGamma)/2,10,105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
-
PARI
(-Euler+log(Pi)-log(2))/2 \\ Michel Marcus, Mar 18 2015
Formula
Equals integral_{x=0..1} log(log(1/x))/(1 + x)^2 dx.
Equals integral_{x=0..infinity} 0.5*log(x)/(1 + cosh(x)) dx.
Equals (log(Pi) - log(2) - gamma)/2.