A256130 Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 7, 1, 0, 7, 30, 33, 11, 1, 0, 11, 72, 130, 77, 16, 1, 0, 15, 160, 463, 438, 157, 22, 1, 0, 22, 351, 1557, 2216, 1223, 289, 29, 1, 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1, 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1
Offset: 0
Examples
T(3,1) = 3: 1a1a1a, 2a1a, 3a. T(3,2) = 4: 1a1a1b, 1a1b1a, 1a1b1b, 2a1b. T(3,3) = 1: 1a1b1c. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 1; 0, 3, 4, 1; 0, 5, 12, 7, 1; 0, 7, 30, 33, 11, 1; 0, 11, 72, 130, 77, 16, 1; 0, 15, 160, 463, 438, 157, 22, 1; 0, 22, 351, 1557, 2216, 1223, 289, 29, 1; 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1; 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)
Comments