A246935
Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
Offset: 0
A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 6, 12, 20, 30, 42, 56, ...
0, 3, 14, 39, 84, 155, 258, 399, ...
0, 5, 34, 129, 356, 805, 1590, 2849, ...
0, 7, 74, 399, 1444, 4055, 9582, 19999, ...
0, 11, 166, 1245, 5876, 20455, 57786, 140441, ...
0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
Columns k=0-10 give:
A000007,
A000041,
A070933,
A242587,
A246936,
A246937,
A246938,
A246939,
A246940,
A246941,
A246942.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
A258466
Number of partitions of n into parts of sorts {1, 2, ... } which are introduced in ascending order.
Original entry on oeis.org
1, 1, 3, 8, 25, 82, 307, 1256, 5688, 28044, 149598, 855811, 5217604, 33711592, 229798958, 1646312694, 12355368849, 96861178984, 791258781708, 6720627124140, 59234364096426, 540812222095821, 5106663817156741, 49798678280227488, 500857393908312587
Offset: 0
a(3) = 8: 1a1a1a, 2a1a, 3a, 1a1a1b, 1a1b1a, 1a1b1b, 2a1b, 1a1b1c (in this example the sorts are labeled a, b, c).
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..25);
-
Table[Plus @@ BellB /@ Length /@ IntegerPartitions[n], {n, 0, 24}] (* Gus Wiseman, Feb 17 2016 *)
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
A262495
Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order such that sorts of adjacent parts are different; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 6, 12, 7, 1, 0, 1, 10, 31, 33, 11, 1, 0, 1, 14, 73, 130, 77, 16, 1, 0, 1, 21, 165, 464, 438, 157, 22, 1, 0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1, 0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1
Offset: 0
T(3,1) = 1: 3a.
T(3,2) = 2: 2a1b, 1a1b1a.
T(3,3) = 1: 1a1b1c.
T(5,3) = 12: 3a1b1c, 2a2b1c, 2a1b1a1c, 2a1b1c1a, 2a1b1c1b, 1a1b1a1b1c, 1a1b1a1c1a, 1a1b1a1c1b, 1a1b1c1a1b, 1a1b1c1a1c, 1a1b1c1b1a, 1a1b1c1b1c.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 4, 4, 1;
0, 1, 6, 12, 7, 1;
0, 1, 10, 31, 33, 11, 1;
0, 1, 14, 73, 130, 77, 16, 1;
0, 1, 21, 165, 464, 438, 157, 22, 1;
0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1;
0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1;
...
Columns k=0-10 give:
A000007,
A057427,
A000065,
A262445/6 =
A320545,
A320546,
A320547,
A320548,
A320549,
A320550,
A320551,
A320552.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
T:= (n, k)-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2017, translated from Maple *)
A300453
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 0 1
1: 0 1 1
2: 0 2 2
3: 0 3 4 1
4: 0 4 7 4 1
5: 0 5 11 10 5 1
6: 0 6 16 20 15 6 1
7: 0 7 22 35 35 21 7 1
8: 0 8 29 56 70 56 28 8 1
9: 0 9 37 84 126 126 84 36 9 1
10: 0 10 46 120 210 252 210 120 45 10 1
11: 0 11 56 165 330 462 462 330 165 55 11 1
12: 0 12 67 220 495 792 924 792 495 220 66 12 1
13: 0 13 79 286 715 1287 1716 1716 1287 715 286 78 13 1
14: 0 14 92 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
____ ____
/ \/ \
/ /\ \
| | | |
| | | |
\ \/ /
\____/\____/
___ ____ __________
/ \ / \ / __ \
/ / \ \ / / \ \
| | | | | | | |
| | | | | | | |
\ \/ / \ \/ /
\_____/\_____/ \____/\____/
____ ____ ____ ____ ____________ __________
/ \ / \ / \ / \ / __ \ / __ \
/ / \ \ / / \ \ / / \ \ / / \ \
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
\ \ / / \ \__/ / \ \ / / \ \__/ /
\____/ \____/ \____________/ \____/ \____/ \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
- Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
- Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
- Michael De Vlieger, Table of n, a(n) for n = 0..11327 (rows 0 <= n <= 150, flattened).
- Agnijo Banerjee, Knot theory [Foil knot family].
- Allison Henrich, Rebecca Hoberg, Slavik Jablan, Lee Johnson, Elizabeth Minten and Ljiljana Radovic, The Theory of Pseudoknots, arXiv preprint arXiv:1210.6934 [math.GT], 2012.
- Abdullah Kopuzlu, Abdulgani Şahin and Tamer Ugur, On polynomials of K(2,n) torus knots, Applied Mathematical Sciences, Vol. 3 (2009), 2899-2910.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Wikipedia, Torus knot.
- Xinfei Li, Xin Liu and Yong-Chang Huang, Tackling tangledness of cosmic strings by knot polynomial topological invariants, arxiv preprint arXiv:1602.08804 [hep-th], 2016.
Triangles related to the regular projection of some knots:
A299989 (connected summed trefoils);
A300184 (chain links);
A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles:
A030528 (row 5),
A256130 (row 3),
A128908 (row 3),
A186084 (row 6),
A284938 (row 7),
A101603 (row 3),
A155112 (row 3),
A257566 (row 3).
-
f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
-
P(n, x) := (x + 1)^n + x^2 - 1$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
T;
-
row(n) = Vecrev((x + 1)^n + x^2 - 1);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
A255970
Number T(n,k) of partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 8, 6, 0, 5, 24, 42, 24, 0, 7, 60, 198, 264, 120, 0, 11, 144, 780, 1848, 1920, 720, 0, 15, 320, 2778, 10512, 18840, 15840, 5040, 0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320, 0, 30, 1486, 30186, 250128, 999720, 2129040, 2479680, 1491840, 362880
Offset: 0
T(3,1) = 3: 1a1a1a, 2a1a, 1a.
T(3,2) = 8: 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a.
T(3,3) = 6: 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 3, 8, 6;
0, 5, 24, 42, 24;
0, 7, 60, 198, 264, 120;
0, 11, 144, 780, 1848, 1920, 720;
0, 15, 320, 2778, 10512, 18840, 15840, 5040;
0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320;
...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k -i]*(-1)^i* Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A319730
Number T(n,k) of plane partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 2, 0, 6, 11, 3, 0, 13, 48, 33, 5, 0, 24, 165, 212, 75, 7, 0, 48, 573, 1253, 798, 172, 11, 0, 86, 1759, 6114, 6175, 2284, 326, 15, 0, 160, 5473, 29573, 45040, 25697, 6198, 631, 22, 0, 282, 16051, 131488, 289685, 238516, 86189, 14519, 1102, 30
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 2;
0, 6, 11, 3;
0, 13, 48, 33, 5;
0, 24, 165, 212, 75, 7;
0, 48, 573, 1253, 798, 172, 11;
0, 86, 1759, 6114, 6175, 2284, 326, 15;
0, 160, 5473, 29573, 45040, 25697, 6198, 631, 22;
0, 282, 16051, 131488, 289685, 238516, 86189, 14519, 1102, 30;
...
A258458
Number of partitions of n into parts of exactly 3 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 7, 33, 130, 463, 1557, 5031, 15877, 49240, 151116, 460173, 1394645, 4212071, 12693724, 38195286, 114817389, 344911117, 1035659955, 3108817911, 9330152740, 27997803871, 84008165515, 252053831034, 756220333901, 2268778132337, 6806569134920, 20420175154486
Offset: 3
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,3):
seq(a(n), n=3..35);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
a[n_] := T[n, 3];
Table[a[n], {n, 3, 35}] (* Jean-François Alcover, May 22 2018, translated from Maple *)
A258459
Number of partitions of n into parts of exactly 4 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 11, 77, 438, 2216, 10422, 46731, 202814, 860586, 3593561, 14834956, 60735095, 247155292, 1001318246, 4043482110, 16288762319, 65500024027, 263035832734, 1055252430510, 4230340216034, 16949359882259, 67881449170593, 271777855641517, 1087867649157513
Offset: 4
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,4):
seq(a(n), n=4..35);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
Table[T[n, 4], {n, 4, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
A258460
Number of partitions of n into parts of exactly 5 sorts which are introduced in ascending order.
Original entry on oeis.org
1, 16, 157, 1223, 8331, 52078, 307122, 1738441, 9552809, 51357781, 271624053, 1418856775, 7341440755, 37708531955, 192586153199, 979219591861, 4961598056587, 25071026497266, 126410385360189, 636282269208285, 3198360708483673, 16059685003763157
Offset: 5
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n,5):
seq(a(n), n=5..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
a[n_] := T[n, 5];
Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 22 2018, translated from Maple *)
A258467
Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order.
Original entry on oeis.org
1, 2, 12, 130, 2216, 52078, 1558219, 56524414, 2406802476, 117575627562, 6478447651345, 397345158550386, 26842747368209994, 1980156804133210116, 158365138356099680582, 13647670818304698139989, 1260732993182758276252088, 124273946254095006307105363
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(2*n, n):
seq(a(n), n=0..20);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)
Showing 1-10 of 16 results.
Comments