cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100222 Decimal expansion of Product_{k>=1} (1-1/5^k).

Original entry on oeis.org

7, 6, 0, 3, 3, 2, 7, 9, 5, 8, 7, 1, 2, 3, 2, 4, 2, 0, 1, 0, 1, 4, 8, 8, 2, 9, 6, 2, 9, 2, 6, 6, 5, 1, 5, 9, 4, 7, 4, 3, 4, 3, 9, 2, 8, 8, 7, 3, 2, 0, 5, 7, 9, 5, 1, 9, 8, 7, 7, 0, 9, 8, 4, 4, 0, 0, 8, 8, 8, 8, 5, 9, 9, 5, 3, 7, 5, 5, 2, 3, 3, 6, 5, 2, 7, 5, 1, 5, 3, 4, 0, 8, 6, 6, 1, 4, 3, 2, 3, 2, 5, 6
Offset: 0

Views

Author

Eric W. Weisstein, Nov 09 2004

Keywords

Examples

			0.76033279587123242010148829629266515947434392887320...
		

Crossrefs

Programs

  • Mathematica
    (5^(1/24)*EllipticThetaPrime[1, 0, 1/Sqrt[5]]^(1/3))/2^(1/3)
    N[QPochhammer[1/5,1/5]] (* G. C. Greubel, Dec 01 2015 *)
  • PARI
    prodinf(k=1, 1 - 1/(5^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals exp(-Sum_{k>0} sigma_1(k)/(k*5^k)) = exp(-Sum_{k>0} A000203(k)/(k*5^k)). - Hieronymus Fischer, Aug 07 2007
Equals (1/5; 1/5){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(5)) * exp(log(5)/24 - Pi^2/(6*log(5))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(5))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027872(n). (End)

A256130 Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 7, 1, 0, 7, 30, 33, 11, 1, 0, 11, 72, 130, 77, 16, 1, 0, 15, 160, 463, 438, 157, 22, 1, 0, 22, 351, 1557, 2216, 1223, 289, 29, 1, 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1, 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 15 2015

Keywords

Comments

In general, column k>1 is asymptotic to c*k^n, where c = 1/(k!*Product_{n>=1} (1-1/k^n)) = 1/(k!*QPochhammer[1/k, 1/k]). - Vaclav Kotesovec, Jun 01 2015

Examples

			T(3,1) = 3: 1a1a1a, 2a1a, 3a.
T(3,2) = 4: 1a1a1b, 1a1b1a, 1a1b1b, 2a1b.
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,    1;
  0,  3,    4,     1;
  0,  5,   12,     7,     1;
  0,  7,   30,    33,    11,     1;
  0, 11,   72,   130,    77,    16,     1;
  0, 15,  160,   463,   438,   157,    22,    1;
  0, 22,  351,  1557,  2216,  1223,   289,   29,   1;
  0, 30,  743,  5031, 10422,  8331,  2957,  492,  37,  1;
  0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46,  1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A258457, A258458, A258459, A258460, A258461, A258462, A258463, A258464, A258465.
Row sums give A258466.
T(2n,n) give A258467.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)

Formula

T(n,k) = A255970(n,k)/k! = (Sum_{i=0..k} (-1)^i * C(k,i) * A246935(n,k-i)) / A000142(k).

A320547 Number of partitions of n into parts of exactly five sorts which are introduced in ascending order such that sorts of adjacent parts are different.

Original entry on oeis.org

1, 11, 77, 438, 2216, 10423, 46732, 202826, 860599, 3593651, 14835058, 60735635, 247155920, 1001321100, 4043485479, 16288776186, 65500040622, 263035896496, 1055252507399, 4230340498375, 16949360224358, 67881450386237, 271777857121332, 1087867654290457
Offset: 5

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=5 of A262495.
Cf. A258460.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(5):
    seq(a(n), n=5..40);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]];
    A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]];
    a[n_] := With[{k = 5}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]];
    a /@ Range[5, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) ~ 4^(n-1) / (4! * QPochhammer[1/4]). - Vaclav Kotesovec, Oct 25 2018
Showing 1-3 of 3 results.