A246935
Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
Offset: 0
A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 6, 12, 20, 30, 42, 56, ...
0, 3, 14, 39, 84, 155, 258, 399, ...
0, 5, 34, 129, 356, 805, 1590, 2849, ...
0, 7, 74, 399, 1444, 4055, 9582, 19999, ...
0, 11, 166, 1245, 5876, 20455, 57786, 140441, ...
0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
Columns k=0-10 give:
A000007,
A000041,
A070933,
A242587,
A246936,
A246937,
A246938,
A246939,
A246940,
A246941,
A246942.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)
A256130
Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 7, 1, 0, 7, 30, 33, 11, 1, 0, 11, 72, 130, 77, 16, 1, 0, 15, 160, 463, 438, 157, 22, 1, 0, 22, 351, 1557, 2216, 1223, 289, 29, 1, 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1, 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1
Offset: 0
T(3,1) = 3: 1a1a1a, 2a1a, 3a.
T(3,2) = 4: 1a1a1b, 1a1b1a, 1a1b1b, 2a1b.
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 3, 4, 1;
0, 5, 12, 7, 1;
0, 7, 30, 33, 11, 1;
0, 11, 72, 130, 77, 16, 1;
0, 15, 160, 463, 438, 157, 22, 1;
0, 22, 351, 1557, 2216, 1223, 289, 29, 1;
0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1;
0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1;
...
Columns k=0-10 give:
A000007,
A000041 (for n>0),
A258457,
A258458,
A258459,
A258460,
A258461,
A258462,
A258463,
A258464,
A258465.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)
A319600
Number T(n,k) of plane partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 4, 0, 6, 22, 18, 0, 13, 96, 198, 120, 0, 24, 330, 1272, 1800, 840, 0, 48, 1146, 7518, 19152, 20640, 7920, 0, 86, 3518, 36684, 148200, 274080, 234720, 75600, 0, 160, 10946, 177438, 1080960, 3083640, 4462560, 3180240, 887040, 0, 282, 32102, 788928, 6952440, 28621920, 62056080, 73175760, 44432640, 10886400
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 4;
0, 6, 22, 18;
0, 13, 96, 198, 120;
0, 24, 330, 1272, 1800, 840;
0, 48, 1146, 7518, 19152, 20640, 7920;
0, 86, 3518, 36684, 148200, 274080, 234720, 75600;
0, 160, 10946, 177438, 1080960, 3083640, 4462560, 3180240, 887040;
...
A278644
Number of partitions of n into parts of sorts {1, 2, ... }.
Original entry on oeis.org
1, 1, 4, 17, 95, 649, 5423, 53345, 604570, 7744990, 110596370, 1740967790, 29943077149, 558541778035, 11229820022013, 242071441524480, 5568954194762675, 136181762611151941, 3527284819779421843, 96465042641948254298, 2777679881076121497601
Offset: 0
a(3) = 17: 1a1a1a, 2a1a, 1a, 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a (in this example the sorts are labeled a, b, c).
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
a:= n-> add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
seq(a(n), n=0..25);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)
Showing 1-4 of 4 results.
Comments