A256130
Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 7, 1, 0, 7, 30, 33, 11, 1, 0, 11, 72, 130, 77, 16, 1, 0, 15, 160, 463, 438, 157, 22, 1, 0, 22, 351, 1557, 2216, 1223, 289, 29, 1, 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1, 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1
Offset: 0
T(3,1) = 3: 1a1a1a, 2a1a, 3a.
T(3,2) = 4: 1a1a1b, 1a1b1a, 1a1b1b, 2a1b.
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 3, 4, 1;
0, 5, 12, 7, 1;
0, 7, 30, 33, 11, 1;
0, 11, 72, 130, 77, 16, 1;
0, 15, 160, 463, 438, 157, 22, 1;
0, 22, 351, 1557, 2216, 1223, 289, 29, 1;
0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1;
0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1;
...
Columns k=0-10 give:
A000007,
A000041 (for n>0),
A258457,
A258458,
A258459,
A258460,
A258461,
A258462,
A258463,
A258464,
A258465.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)
A320545
Number of partitions of n into parts of exactly three sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 4, 12, 31, 73, 165, 357, 760, 1582, 3270, 6678, 13589, 27482, 55468, 111588, 224259, 449908, 902106, 1807173, 3619162, 7244557, 14499238, 29011551, 58044194, 116115782, 232275383, 464607730, 929306306, 1858730674, 3717648658, 7435541392, 14871467784
Offset: 3
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(3):
seq(a(n), n=3..40);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]];
A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]];
a[n_] := With[{k = 3}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]];
a /@ Range[3, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
A262445
Number of exact 3-colored partitions such that no adjacent parts have the same color.
Original entry on oeis.org
0, 0, 0, 6, 24, 72, 186, 438, 990, 2142, 4560, 9492, 19620, 40068, 81534, 164892, 332808, 669528, 1345554, 2699448, 5412636, 10843038, 21714972, 43467342, 86995428, 174069306, 348265164, 696694692, 1393652298, 2787646380, 5575837836, 11152384044, 22305891948, 44613248352, 89228806704, 178460625402, 356925987924
Offset: 0
a(3)=6 because there are three partitions of 3 and there are no ways to color [3] or [2,1] but there are six ways to color [1,1,1].
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
a:= n-> `if`(n=0, 0, b(n$2, 2)/2*3-6*b(n$2, 1)+3):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 23 2015
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]]; a[n_] := If[n == 0, 0, b[n, n, 2]/2*3 - 6*b[n, n, 1] + 3]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
A262496
Number of partitions of n into parts of sorts {1, 2, ... } which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 1, 2, 4, 10, 27, 87, 312, 1269, 5703, 28082, 149643, 855938, 5217753, 33712046, 229799508, 1646314498, 12355371024, 96861186897, 791258791159, 6720627161903, 59234364141343, 540812222291531, 5106663817387466, 49798678281320763, 500857393909589995
Offset: 0
a(3) = 4: 3a, 2a1b, 1a1b1a, 1a1b1c (in this example the sorts are labeled a, b, c).
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
T:= (n, k)-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..30);
-
b[n_, i_, k_] := b[n, i, k] = If[n==0 || i==1, k^(n-1), b[n, i-1, k] + If[i > n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n==0, 1, If[k<2, k, k*b[n, n, k - 1]]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
A320546
Number of partitions of n into parts of exactly four sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 7, 33, 130, 464, 1558, 5039, 15886, 49282, 151165, 460352, 1394863, 4212752, 12694566, 38197710, 114820403, 344919283, 1035670246, 3108844526, 9330186438, 27997888759, 84008273161, 252054096569, 756220672185, 2268778953179, 6806570182252, 20420177671614
Offset: 4
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(4):
seq(a(n), n=4..40);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]];
A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]];
a[n_] := With[{k = 4}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]];
a /@ Range[4, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
A320547
Number of partitions of n into parts of exactly five sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 11, 77, 438, 2216, 10423, 46732, 202826, 860599, 3593651, 14835058, 60735635, 247155920, 1001321100, 4043485479, 16288776186, 65500040622, 263035896496, 1055252507399, 4230340498375, 16949360224358, 67881450386237, 271777857121332, 1087867654290457
Offset: 5
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(5):
seq(a(n), n=5..40);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n - 1), b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]];
A[n_, k_] := If[n == 0, 1, If[k < 2, k, k b[n, n, k - 1]]];
a[n_] := With[{k = 5}, Sum[A[n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}]];
a /@ Range[5, 40] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
A320548
Number of partitions of n into parts of exactly six sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 16, 157, 1223, 8331, 52078, 307123, 1738442, 9552826, 51357799, 271624228, 1418856967, 7341442171, 37708533544, 192586163135, 979219603193, 4961598120154, 25071026570558, 126410385741982, 636282269651863, 3198360710675384, 16059685006324807
Offset: 6
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(6):
seq(a(n), n=6..40);
A320549
Number of partitions of n into parts of exactly seven sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 22, 289, 2957, 26073, 208516, 1558219, 11087757, 76079369, 507834036, 3318628468, 21330628088, 135325211035, 849659803048, 5290544985029, 32722489543068, 201296535411532, 1232850239281547, 7523511821702402, 45777353201698899, 277862479922939524
Offset: 7
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(7):
seq(a(n), n=7..40);
A320550
Number of partitions of n into parts of exactly eight sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 29, 492, 6401, 70880, 704676, 6490951, 56524414, 471750268, 3810085913, 29989229889, 231255237342, 1754111872952, 13128442914265, 97189645391839, 713050007293418, 5192646586543845, 37581376345173772, 270593146238709314, 1939929376873532436
Offset: 8
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(8):
seq(a(n), n=8..40);
A320551
Number of partitions of n into parts of exactly nine sorts which are introduced in ascending order such that sorts of adjacent parts are different.
Original entry on oeis.org
1, 37, 788, 12705, 172520, 2084836, 23169639, 241881526, 2406802476, 23064505722, 214505275666, 1947297442708, 17332491414655, 151788374232332, 1311496639251360, 11205023121317869, 94832831557101194, 796244028802170279, 6640545376656272033
Offset: 9
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> (k-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k))(9):
seq(a(n), n=9..40);
Showing 1-10 of 13 results.
Comments