cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A262495 Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order such that sorts of adjacent parts are different; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 6, 12, 7, 1, 0, 1, 10, 31, 33, 11, 1, 0, 1, 14, 73, 130, 77, 16, 1, 0, 1, 21, 165, 464, 438, 157, 22, 1, 0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1, 0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2015

Keywords

Examples

			T(3,1) = 1: 3a.
T(3,2) = 2: 2a1b, 1a1b1a.
T(3,3) = 1: 1a1b1c.
T(5,3) = 12: 3a1b1c, 2a2b1c, 2a1b1a1c, 2a1b1c1a, 2a1b1c1b, 1a1b1a1b1c, 1a1b1a1c1a, 1a1b1a1c1b, 1a1b1c1a1b, 1a1b1c1a1c, 1a1b1c1b1a, 1a1b1c1b1c.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  2,   1;
  0, 1,  4,   4,    1;
  0, 1,  6,  12,    7,     1;
  0, 1, 10,  31,   33,    11,    1;
  0, 1, 14,  73,  130,    77,   16,    1;
  0, 1, 21, 165,  464,   438,  157,   22,   1;
  0, 1, 29, 357, 1558,  2216, 1223,  289,  29,  1;
  0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1;
  ...
		

Crossrefs

Main diagonal and lower diagonal give: A000012, A000124 (shifted).
Row sums give A262496.
T(2n,n) gives A262529.
Cf. A256130.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
    T:= (n, k)-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2017, translated from Maple *)

A258459 Number of partitions of n into parts of exactly 4 sorts which are introduced in ascending order.

Original entry on oeis.org

1, 11, 77, 438, 2216, 10422, 46731, 202814, 860586, 3593561, 14834956, 60735095, 247155292, 1001318246, 4043482110, 16288762319, 65500024027, 263035832734, 1055252430510, 4230340216034, 16949359882259, 67881449170593, 271777855641517, 1087867649157513
Offset: 4

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Column k=4 of A256130.
Cf. A320546.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(n,4):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i/(i!*(k - i)!), {i, 0, k}];
    Table[T[n, 4], {n, 4, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)

Formula

a(n) ~ c * 4^n, where c = 1/(24*Product_{n>=1} (1-1/4^n)) = 1/(24*QPochhammer[1/4, 1/4]) = 1/(24*A100221) = 0.060514735102066542326446... . - Vaclav Kotesovec, Jun 01 2015
Showing 1-2 of 2 results.