A258466
Number of partitions of n into parts of sorts {1, 2, ... } which are introduced in ascending order.
Original entry on oeis.org
1, 1, 3, 8, 25, 82, 307, 1256, 5688, 28044, 149598, 855811, 5217604, 33711592, 229798958, 1646312694, 12355368849, 96861178984, 791258781708, 6720627124140, 59234364096426, 540812222095821, 5106663817156741, 49798678280227488, 500857393908312587
Offset: 0
a(3) = 8: 1a1a1a, 2a1a, 3a, 1a1a1b, 1a1b1a, 1a1b1b, 2a1b, 1a1b1c (in this example the sorts are labeled a, b, c).
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..25);
-
Table[Plus @@ BellB /@ Length /@ IntegerPartitions[n], {n, 0, 24}] (* Gus Wiseman, Feb 17 2016 *)
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
A262495
Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order such that sorts of adjacent parts are different; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 6, 12, 7, 1, 0, 1, 10, 31, 33, 11, 1, 0, 1, 14, 73, 130, 77, 16, 1, 0, 1, 21, 165, 464, 438, 157, 22, 1, 0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1, 0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1
Offset: 0
T(3,1) = 1: 3a.
T(3,2) = 2: 2a1b, 1a1b1a.
T(3,3) = 1: 1a1b1c.
T(5,3) = 12: 3a1b1c, 2a2b1c, 2a1b1a1c, 2a1b1c1a, 2a1b1c1b, 1a1b1a1b1c, 1a1b1a1c1a, 1a1b1a1c1b, 1a1b1c1a1b, 1a1b1c1a1c, 1a1b1c1b1a, 1a1b1c1b1c.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 4, 4, 1;
0, 1, 6, 12, 7, 1;
0, 1, 10, 31, 33, 11, 1;
0, 1, 14, 73, 130, 77, 16, 1;
0, 1, 21, 165, 464, 438, 157, 22, 1;
0, 1, 29, 357, 1558, 2216, 1223, 289, 29, 1;
0, 1, 41, 760, 5039, 10423, 8331, 2957, 492, 37, 1;
...
Columns k=0-10 give:
A000007,
A057427,
A000065,
A262445/6 =
A320545,
A320546,
A320547,
A320548,
A320549,
A320550,
A320551,
A320552.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
T:= (n, k)-> add(A(n, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2017, translated from Maple *)
Showing 1-2 of 2 results.
Comments