cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256152 Numbers k such that k is the product of two distinct primes and sigma(k) is a square number.

Original entry on oeis.org

22, 94, 115, 119, 214, 217, 265, 382, 497, 517, 527, 679, 745, 862, 889, 1174, 1177, 1207, 1219, 1393, 1465, 1501, 1649, 1687, 1915, 1942, 2101, 2159, 2201, 2359, 2899, 2902, 2995, 3007, 3143, 3383, 3401, 3427, 3937, 4039, 4054, 4097, 4315, 4529, 4537, 4702, 4741, 5029, 5065, 5398, 5587
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

This sequence is the intersection of A006881 and A006532.

Examples

			199 is in the sequence because 119=7*17 (the product of two distinct primes) and sigma(119)=8*18=144=12^2 (a square number).
		

Crossrefs

Programs

  • Haskell
    a256152 n = a256152_list !! (n-1)
    256152_list = filter f a006881_list where
       f x = a010052' ((spf + 1) * (x `div` spf + 1)) == 1
             where spf = a020639 x
    -- Reinhard Zumkeller, Apr 06 2015
  • Mathematica
    f[n_] := Block[{pf = FactorInteger@ n}, Max @@ Last /@ pf == 1 && Length@ pf == 2]; Select[Range@ 6000, IntegerQ@ Sqrt@ DivisorSigma[1, #] && f@ # &] (* Michael De Vlieger, Mar 17 2015 *)
  • PARI
    {for(i=1,10^4,if(omega(i)==2&&issquarefree(i)&&issquare(sigma(i)),print1(i,", ")))}