A256179 Sequence of power towers in ascending order, using all possible permutations of 2's and 3's.
2, 3, 4, 8, 9, 16, 27, 81, 256, 512, 6561, 19683, 65536, 43046721, 134217728, 7625597484987, 2417851639229258349412352, 443426488243037769948249630619149892803, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 1
Keywords
Examples
a(12) = 19683 because A248907(12) = 332, and 3^(3^2) = 19683. a(23) = 2^3^2^3 = 11423...73952 (1976 digits), because A248907(23) = 2323.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..22
- Vladimir Reshetnikov, 2-3 sequence puzzle, SeqFan list, Mar 18 2015.
Programs
-
PARI
A256179(n)=A256229(A248907[n]) \\ where A248907 is assumed to be defined as vector. - M. F. Hasler, Mar 19 2015
Formula
A256179 = A256229 o A248907 = A256229 o A032810 o A185969, i.e., a(n) = A256229(A248907(n)) = A256229(A032810(A185969(n))).
Recurrence: a(1)=2, a(2)=3, a(3)=2^2, a(4)=2^3, a(5)=3^2, a(6)=2^(2^2), a(7)=3^3, a(8)=3^(2^2), a(9)=2^(2^3), a(10)=2^(3^2), a(11)=3^(2^3), a(12)=3^(3^2); and for n>6, a(2n)=3^a(n-1), a(2n-1)=2^a(n-1). - Vladimir Reshetnikov, Mar 19 2015
Extensions
More terms from M. F. Hasler, Mar 19 2015
Comments