A256209 Coefficients of mock modular form H_2^(4) (divided by 16).
1, 3, 7, 14, 27, 49, 84, 141, 230, 364, 567, 867, 1302, 1932, 2829, 4091, 5859, 8309, 11675, 16275, 22513, 30914, 42174, 57176, 77049, 103263, 137669, 182616, 241110, 316910, 414750, 540603, 701903, 907928, 1170261, 1503238, 1924607, 2456349
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 7*x^2 + 14*x^3 + 27*x^4 + 49*x^5 + 84*x^6 + 141*x^7 + ... G.f. = q^3 + 3*q^7 + 7*q^11 + 14*q^15 + 27*q^19 + 49*q^23 + 84*q^27 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 3, 2nd equation.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Miranda C. N. Cheng, John F. R. Duncan, Jeffrey A. Harvey, Umbral Moonshine, arXiv:1204.2779 [math.RT], 2012-2013.
Programs
-
Mathematica
nmax = 50; a:= CoefficientList[Series[q*Sum[q^(k - 1)*(Product[1 + q^j, {j, 1, 2 k - 2}])/(Product[1 - q^(2 j - 1), {j, 1, k}])^2, {k, 0, nmax}], {q, 0, 150}], q]; Table[a[[n]], {n, 1, 100}] (* G. C. Greubel, Jul 27 2018 *)
-
PARI
{a(n) = if( n<0, 0, n++; polcoeff( sum(k=1, n, x^k * prod(i=1, 2*k - 2, 1 + x^i, 1 + x * O(x^(n - k))) / prod(i=1, k, 1 - x^(2*i - 1), 1 + x * O(x^(n - k)))^2), n))}; /* Michael Somos, Nov 04 2015 */
Formula
G.f.: Sum_{k>0} x^(k-1) * (1 + x) * ... * (1 + x^(2*k-2)) / ((1 + x) * (1 + x^3) * ... (1 + x^(2*k-1)))^2. - Michael Somos, Nov 04 2015
Comments