cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256209 Coefficients of mock modular form H_2^(4) (divided by 16).

Original entry on oeis.org

1, 3, 7, 14, 27, 49, 84, 141, 230, 364, 567, 867, 1302, 1932, 2829, 4091, 5859, 8309, 11675, 16275, 22513, 30914, 42174, 57176, 77049, 103263, 137669, 182616, 241110, 316910, 414750, 540603, 701903, 907928, 1170261, 1503238, 1924607, 2456349
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2015

Keywords

Comments

The coefficients occur on page 94, Table 24, column 1A for McKay-Thompson series H_{1A,2}^(4) in the Cheng et al. arXiv article. - Michael Somos, Nov 04 2015

Examples

			G.f. = 1 + 3*x + 7*x^2 + 14*x^3 + 27*x^4 + 49*x^5 + 84*x^6 + 141*x^7 + ...
G.f. = q^3 + 3*q^7 + 7*q^11 + 14*q^15 + 27*q^19 + 49*q^23 + 84*q^27 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 3, 2nd equation.

Crossrefs

Equals A256052/8.

Programs

  • Mathematica
    nmax = 50; a:= CoefficientList[Series[q*Sum[q^(k - 1)*(Product[1 + q^j, {j, 1, 2 k - 2}])/(Product[1 - q^(2 j - 1), {j, 1, k}])^2, {k, 0, nmax}], {q, 0, 150}], q]; Table[a[[n]], {n, 1, 100}] (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {a(n) = if( n<0, 0, n++; polcoeff( sum(k=1, n, x^k * prod(i=1, 2*k - 2, 1 + x^i, 1 + x * O(x^(n - k))) / prod(i=1, k, 1 - x^(2*i - 1), 1 + x * O(x^(n - k)))^2), n))}; /* Michael Somos, Nov 04 2015 */

Formula

G.f.: Sum_{k>0} x^(k-1) * (1 + x) * ... * (1 + x^(2*k-2)) / ((1 + x) * (1 + x^3) * ... (1 + x^(2*k-1)))^2. - Michael Somos, Nov 04 2015
2 * a(n) = A053270(3*n) - A257640(3*n). - Michael Somos, Nov 04 2015