A256216 a(n) = A053656(n) - A000011(n).
0, 0, 0, 0, 0, 1, 1, 4, 7, 18, 31, 70, 126, 261, 484, 960, 1800, 3515, 6643, 12852, 24458, 47151, 90157, 173744, 333498, 643230, 1238671, 2392650, 4620006, 8939676, 17302033, 33538048, 65042526, 126289800, 245361172
Offset: 1
Keywords
Examples
From _Ed Wynn_ and _Andrew Howroyd_, May 22 2021: (Start) The a(6) = 1 pair of bracelets are rrbbrb and its complement bbrrbr. These two are not the same under simultaneous reversal and swapping the colors (rrbbrb is equivalent to rbrrbb which is not the same as bbrrbr by rotation). Replacing r with ->- and b with -<- gives two distinct orientations of the cycle: ->-.->-.-<-.-<-.->-.-<- : ->-.-<-.->-.->-.-<-.-<- | | : | | -----------.----------- : -----------.----------- These two might be written in shorthand as >><<>< and <<>><>. The a(8) = 4 pairs of bracelets are rrrrbrbb, rrrbrrbb, rrrbrbbb, rrbrbrbb and their complements. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..3335
- D. Bundala, M. Codish, L. Cruz-Filipe et al., Optimal-Depth Sorting Networks, arXiv preprint arXiv:1412.5302 [cs.DS], 2014. See Table 4 and associated comments.
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366 | doi:10.1246/bcsj.20160369. See Table 8.
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264; doi:10.1246/bcsj.20140204. See Table 2 (E_c).
Crossrefs
Programs
-
Mathematica
Table[Total[EulerPhi[#] 2^(n/#) & /@ Divisors[n]]/(2 n) + 2^(n/2 - 2) (1 - Mod[n, 2]) - If[n < 1, Boole[n == 0], 2^Quotient[n, 2]/2 + DivisorSum[n, EulerPhi[2 #] 2^(n/#) &]/(4 n)], {n, 35}] (* Michael De Vlieger, Sep 05 2015, after Jean-François Alcover at A053656 and Michael Somos at A000011 *)
Comments