cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256235 Sum of all the parts in the partitions of 5n into 5 parts.

Original entry on oeis.org

0, 5, 70, 450, 1680, 4800, 11310, 23590, 44600, 78615, 130550, 207075, 315600, 465790, 667940, 935250, 1281520, 1723970, 2280330, 2972455, 3822500, 4857510, 6104560, 7596325, 9365400, 11450750, 13890760, 16731225, 20017060, 23801315, 28135800, 33081495
Offset: 0

Views

Author

Colin Barker, Mar 20 2015

Keywords

Examples

			For n=2 there are 7 partitions of 5*2 = 10, so a(2) = 7*10 = 70.
		

Crossrefs

Programs

  • Mathematica
    Plus @@ Total /@ IntegerPartitions[5 #, {5}] & /@ Range[0, 31] (* Michael De Vlieger, Mar 20 2015 *)
    CoefficientList[Series[5 x (2 x^14 + 19 x^13 + 97 x^12 + 277 x^11 + 591 x^10 + 955 x^9 + 1267 x^8 + 1355 x^7 + 1217 x^6 + 880 x^5 + 520 x^4 + 231 x^3 + 75 x^2 + 13 x + 1) / ((x - 1)^6 (x + 1)^3 (x^2 + 1)^2 (x^2 + x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{1,1,1,0,-4,-1,-1,4,4,-1,-1,-4,0,1,1,1,-1},{0,5,70,450,1680,4800,11310,23590,44600,78615,130550,207075,315600,465790,667940,935250,1281520},40] (* Harvey P. Dale, Jun 14 2016 *)
  • PARI
    concat(0, Vec(5*x*(2*x^14 +19*x^13 +97*x^12 +277*x^11 +591*x^10 +955*x^9 +1267*x^8 +1355*x^7 +1217*x^6 +880*x^5 +520*x^4 +231*x^3 +75*x^2 +13*x +1) / ((x -1)^6*(x +1)^3*(x^2 +1)^2*(x^2 +x +1)^2) + O(x^100)))

Formula

a(n) = 5*n*A256225(n).
G.f.: 5*x*(2*x^14 +19*x^13 +97*x^12 +277*x^11 +591*x^10 +955*x^9 +1267*x^8 +1355*x^7 +1217*x^6 +880*x^5 +520*x^4 +231*x^3 +75*x^2 +13*x +1) / ((x -1)^6*(x +1)^3*(x^2 +1)^2*(x^2 +x +1)^2).