cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256239 Sum of all the parts in the partitions of 6n into 6 parts.

Original entry on oeis.org

0, 6, 132, 1044, 4776, 15960, 43416, 102144, 215712, 419040, 761520, 1310628, 2155752, 3412656, 5228076, 7784910, 11307648, 16068264, 22392504, 30666570, 41344080, 54953640, 72106452, 93504798, 119950416, 152353650, 191742720, 239273514, 296239776, 364083690
Offset: 0

Views

Author

Colin Barker, Mar 20 2015

Keywords

Examples

			For n=2 there are 11 partitions of 6*2 = 12, so a(2) = 11*12 = 132.
		

Crossrefs

Programs

  • Mathematica
    Plus @@ Total /@ IntegerPartitions[6 #, {6}] & /@ Range[0, 29] (* Michael De Vlieger, Mar 20 2015 *)
    CoefficientList[Series[- 6 x (9 x^13 + 77 x^12 + 247 x^11 + 485 x^10 + 744 x^9 + 990 x^8 + 1109 x^7 + 1029 x^6 + 809 x^5 + 551 x^4 + 301 x^3 + 109 x^2 + 19 x + 1) / ((x - 1)^7 (x + 1)^2 (x^4 + x^3 + x^2 + x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{3,-1,-5,5,3,-9,3,10,-10,-3,9,-3,-5,5,1,-3,1},{0,6,132,1044,4776,15960,43416,102144,215712,419040,761520,1310628,2155752,3412656,5228076,7784910,11307648},30] (* Harvey P. Dale, Mar 07 2025 *)
  • PARI
    concat(0, Vec(-6*x*(9*x^13 +77*x^12 +247*x^11 +485*x^10 +744*x^9 +990*x^8 +1109*x^7 +1029*x^6 +809*x^5 +551*x^4 +301*x^3 +109*x^2 +19*x +1) / ((x -1)^7*(x +1)^2*(x^4 +x^3 +x^2 +x +1)^2) + O(x^100)))

Formula

a(n) = 6*n*A256226(n).
G.f.: -6*x*(9*x^13 +77*x^12 +247*x^11 +485*x^10 +744*x^9 +990*x^8 +1109*x^7 +1029*x^6 +809*x^5 +551*x^4 +301*x^3 +109*x^2 +19*x +1) / ((x -1)^7*(x +1)^2*(x^4 +x^3 +x^2 +x +1)^2).