A256249 Partial sums of A006257 (Josephus problem).
0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 46, 57, 70, 85, 86, 89, 94, 101, 110, 121, 134, 149, 166, 185, 206, 229, 254, 281, 310, 341, 342, 345, 350, 357, 366, 377, 390, 405, 422, 441, 462, 485, 510, 537, 566, 597, 630, 665, 702, 741, 782, 825, 870, 917, 966, 1017, 1070, 1125, 1182, 1241, 1302, 1365, 1366, 1369, 1374
Offset: 0
Examples
Written as an irregular triangle T(n,k), k >= 1, in which the row lengths are the terms of A011782 the sequence begins: 0; 1; 2, 5; 6, 9, 14, 21; 22, 25, 30, 37, 46, 57, 70, 85; 86, 89, 94,101,110,121,134,149,166,185,206,229,254,281,310,341; ... Right border, a(2^m-1), gives A002450(m) for m >= 0. a(2^m-2) = A203241(m) for m >= 2. It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, the positive elements of the columns k, if k is a power of 2. From _Omar E. Pol_, Jan 03 2016: (Start) Illustration of initial terms in the fourth quadrant of the square grid: --------------------------------------------------------------------------- n a(n) Compact diagram --------------------------------------------------------------------------- 0 0 _ 1 1 |_|_ _ 2 2 |_| | 3 5 |_ _|_ _ _ _ 4 6 |_| | | | 5 9 |_ _| | | 6 14 |_ _ _| | 7 21 |_ _ _ _|_ _ _ _ _ _ _ _ 8 22 |_| | | | | | | | 9 25 |_ _| | | | | | | 10 30 |_ _ _| | | | | | 11 37 |_ _ _ _| | | | | 12 46 |_ _ _ _ _| | | | 13 57 |_ _ _ _ _ _| | | 14 70 |_ _ _ _ _ _ _| | 15 85 |_ _ _ _ _ _ _ _| . a(n) is also the total number of cells in the first n regions of the diagram. A006257(n) gives the number of cells in the n-th region of the diagram. (End)
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 37, 41.
- Yuri Nikolayevsky and Ioannis Tsartsaflis, Cohomology of N-graded Lie algebras of maximal class over Z_2, arXiv:1512.87676 [math.RA], (2016), page 6.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
- Index entries for sequences related to the Josephus Problem
Crossrefs
Programs
-
Mathematica
(* Based on Birkas Gyorgy's code in A006257 *) Accumulate[Prepend[Flatten[Table[Range[1,2^n-1,2],{n,0,7}]],0]] (* Ivan N. Ianakiev, Mar 30 2015 *)
-
PARI
a(n)=n++;b=#binary(n>>1);(4^b-1)/3+(n-2^b)^2 \\ David A. Corneth, Mar 21 2015
Formula
a(n) = (A256250(n+1) - 1)/4.
Comments