cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256249 Partial sums of A006257 (Josephus problem).

Original entry on oeis.org

0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 46, 57, 70, 85, 86, 89, 94, 101, 110, 121, 134, 149, 166, 185, 206, 229, 254, 281, 310, 341, 342, 345, 350, 357, 366, 377, 390, 405, 422, 441, 462, 485, 510, 537, 566, 597, 630, 665, 702, 741, 782, 825, 870, 917, 966, 1017, 1070, 1125, 1182, 1241, 1302, 1365, 1366, 1369, 1374
Offset: 0

Views

Author

Omar E. Pol, Mar 20 2015

Keywords

Comments

Also total number of ON states after n generations in one of the four wedges of the one-step rook version (or in one of the four quadrants of the one-step bishop version) of the cellular automaton of A256250.
A006257 gives the number of cells turned ON at n-th stage.
First differs from A255747 at a(11).
First differs from A169779 at a(10).
It appears that the odd terms (a bisection) give A256250.

Examples

			Written as an irregular triangle T(n,k), k >= 1, in which the row lengths are the terms of A011782 the sequence begins:
   0;
   1;
   2,  5;
   6,  9, 14, 21;
  22, 25, 30, 37, 46, 57, 70, 85;
  86, 89, 94,101,110,121,134,149,166,185,206,229,254,281,310,341;
  ...
Right border, a(2^m-1), gives A002450(m) for m >= 0.
a(2^m-2) = A203241(m) for m >= 2.
It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, the positive elements of the columns k, if k is a power of 2.
From _Omar E. Pol_, Jan 03 2016: (Start)
Illustration of initial terms in the fourth quadrant of the square grid:
---------------------------------------------------------------------------
n    a(n)                 Compact diagram
---------------------------------------------------------------------------
0     0     _
1     1    |_|_ _
2     2      |_| |
3     5      |_ _|_ _ _ _
4     6          |_| | | |
5     9          |_ _| | |
6    14          |_ _ _| |
7    21          |_ _ _ _|_ _ _ _ _ _ _ _
8    22                  |_| | | | | | | |
9    25                  |_ _| | | | | | |
10   30                  |_ _ _| | | | | |
11   37                  |_ _ _ _| | | | |
12   46                  |_ _ _ _ _| | | |
13   57                  |_ _ _ _ _ _| | |
14   70                  |_ _ _ _ _ _ _| |
15   85                  |_ _ _ _ _ _ _ _|
.
a(n) is also the total number of cells in the first n regions of the diagram. A006257(n) gives the number of cells in the n-th region of the diagram.
(End)
		

Crossrefs

Programs

Formula

a(n) = (A256250(n+1) - 1)/4.