A256268 Table of k-fold factorials, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0
Examples
1 1 1 1 1 1 1... A000012 1 1 2 6 24 120 720... A000142 1 1 3 15 105 945 10395... A001147 1 1 4 28 280 3640 58240... A007559 1 1 5 45 585 9945 208845... A007696 1 1 6 66 1056 22176 576576... A008548 1 1 7 91 1729 43225 1339975... A008542 1 1 8 120 2640 76560 2756160... A045754 1 1 9 153 3825 126225 5175225... A045755 1 1 10 190 5320 196840 9054640... A045756 1 1 11 231 7161 293601 14977651... A144773
Links
- G. C. Greubel, Antidiagonal rows n = 0..100, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
-
Magma
function T(n,k) if k eq 0 or n eq 0 then return 1; else return (&*[j*k+1: j in [0..n-1]]); end if; return T; end function; [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
-
Maple
seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
-
Mathematica
T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
-
PARI
T(n,k) = prod(j=0, n-1, j*k+1); for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
-
Sage
[[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
Formula
A(n, k) = (-n)^k*FallingFactorial(-1/n, k) for n >= 1. - Peter Luschny, Dec 21 2021
Comments