cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258766 Fixed points in A256271.

Original entry on oeis.org

1, 2, 3, 26, 32, 34, 37, 49, 55, 62, 64, 74, 75, 76, 77, 164, 171, 189, 224, 273, 279, 280, 285, 303, 333, 345, 356, 363, 368, 382, 399, 411, 416, 422, 429, 430, 435, 441, 453, 470, 472, 483, 494, 524, 539, 561, 566, 579, 580, 585, 603, 609, 621, 644, 662, 666, 674, 693, 704, 715, 737, 771, 777, 794, 803
Offset: 1

Views

Author

Derek Orr, Jun 09 2015

Keywords

Comments

Numbers n such that A256271(n) = n.
From Robert Israel, Jul 16 2019: (Start)
A necessary condition for n to be in the sequence is that A256271(n)-n is even. When A256271(n) is even, A256271(n+1) must be odd; when A256271(n) is odd, A256271(n+1) may be either even or odd, but it appears that it is nearly always even.
The result is that we have long intervals where A256271(n)-n is even (e.g. 3369 to 22635), in which members of this sequence are relatively common, and long intervals where A256271(n)-n is odd (e.g. 22636 to 67110) which contain no members of this sequence. (End)

Crossrefs

Programs

  • Maple
    Res:= 1: count:= 1: v:= 1:
    Cands:= [$2..1000]:
    for n from 2 do
      found:= false;
      for j from 1 to nops(Cands) do
        if numtheory:-issqrfree(v + Cands[j]^2) then
          found:= true;
          if n = Cands[j] then Res:= Res, n; count:= count+1 fi;
          v:= Cands[j]^2;
          Cands:= subsop(j=NULL, Cands);
          break
        fi
      od;
      if not found then break fi;
    od:
    Res; # Robert Israel, Jul 16 2019
  • PARI
    print1(1,", ");v=[1]; n=1; while(#v<10^3, if(issquarefree(n^2+v[#v]^2)&&!vecsearch(vecsort(v), n), if(n==#v, print1(n, ", ")); n=0); n++)

A258767 With a(1) = 1, a(n) is the smallest number not already in the sequence such that a(n)^2 + a(n-1)^2 is not squarefree.

Original entry on oeis.org

1, 7, 14, 2, 4, 3, 6, 8, 10, 5, 12, 9, 13, 16, 18, 15, 20, 21, 22, 11, 23, 36, 24, 26, 28, 29, 47, 46, 30, 25, 35, 40, 32, 34, 17, 19, 33, 27, 31, 42, 38, 41, 37, 39, 45, 48, 44, 50, 49, 43, 51, 54, 52, 56, 58, 59, 62, 60, 55, 65, 70, 63, 57, 66, 64, 68, 72, 69, 67, 81, 75, 78, 71, 53, 79, 97, 96, 74
Offset: 1

Views

Author

Derek Orr, Jun 09 2015

Keywords

Comments

Believed to be a permutation of the natural numbers.

Crossrefs

Cf. A258768 (fixed points).
Cf. A008966, A258827 (putative inverse).

Programs

  • Haskell
    import Data.List (delete)
    a258767 n = a258767_list !! (n-1)
    a258767_list = 1 : f 1 [2..] where
       f x zs = g zs where
         g (y:ys) | a008966 (x^2 + y^2) == 1 = g ys
                  | otherwise = y : f y (delete y zs)
    -- Reinhard Zumkeller, Jun 11 2015
  • PARI
    v=[1]; n=1; while(n<100, if(!issquarefree(n^2+v[#v]^2)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0); n++); v
    

A258768 Fixed points in A258767.

Original entry on oeis.org

1, 8, 13, 34, 45, 49, 51, 80, 86, 92, 98, 146, 163, 164, 206, 216, 266, 279, 303, 312, 333, 337, 348, 356, 359, 371, 387, 388, 398, 406, 421, 432, 445, 460, 463, 465, 509, 517, 533, 536, 546, 548, 572, 576, 585, 602, 607, 612, 624, 638, 658, 666, 669, 675, 688, 704, 711, 734, 744, 765, 771, 801, 810, 814
Offset: 1

Views

Author

Derek Orr, Jun 09 2015

Keywords

Comments

Numbers n such that A258767(n) = n.
Also fixed points of A258827. - Reinhard Zumkeller, Jun 11 2015

Crossrefs

Programs

  • Haskell
    a258768 n = a258768_list !! (n-1)
    a258768_list = [x | x <- [1..], a258767 x == x]
    -- Reinhard Zumkeller, Jun 11 2015
  • PARI
    print1(1, ", "); v=[1]; n=1; while(#v<10^3, if(!issquarefree(n^2+v[#v]^2)&&!vecsearch(vecsort(v), n), v=concat(v, n); if(n==#v, print1(n, ", ")); n=0); n++)
    
Showing 1-3 of 3 results.