cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256310 Number of partitions of 2n into exactly 6 parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 11, 20, 35, 58, 90, 136, 199, 282, 391, 532, 709, 931, 1206, 1540, 1945, 2432, 3009, 3692, 4494, 5427, 6510, 7760, 9192, 10829, 12692, 14800, 17180, 19858, 22856, 26207, 29941, 34085, 38677, 43752, 49342, 55491, 62239, 69624, 77695, 86499
Offset: 0

Views

Author

Colin Barker, Mar 22 2015

Keywords

Comments

The number of partitions of 2*(n-3) into at most 6 parts. - Colin Barker, Mar 31 2015

Examples

			For n=4 the 2 partitions of 2*4 = 8 are [1,1,1,1,1,3] and [1,1,1,1,2,2].
		

Crossrefs

Cf. Similar sequences: A000212 (3 parts), A001477 (2 parts), A014126 (4 parts), A256309 (5 parts).

Programs

  • Mathematica
    CoefficientList[Series[x^3 (x^4 + x^3 + x^2 + 1) / ((x - 1)^6 (x + 1) (x^2 + x + 1)^2 (x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 22 2015 *)
  • PARI
    concat(0, vector(40, n, k=0; forpart(p=2*n, k++, , [6,6]); k))
    
  • PARI
    concat([0,0,0], Vec(x^3*(x^4+x^3+x^2+1)/((x-1)^6*(x+1)*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)) + O(x^100)))

Formula

G.f.: x^3*(x^4+x^3+x^2+1) / ((x-1)^6*(x+1)*(x^2+x+1)^2*(x^4+x^3+x^2+x+1)).
a(n) = 2*a(n-1) - 3*a(n-4) + a(n-5) + a(n-6) + a(n-9) + a(n-10) - 3*a(n-11) + 2*a(n-14) - a(n-15). - Wesley Ivan Hurt, Jul 28 2022