cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256315 Number of partitions of 3n into exactly 6 parts.

Original entry on oeis.org

0, 0, 1, 3, 11, 26, 58, 110, 199, 331, 532, 811, 1206, 1729, 2432, 3331, 4494, 5942, 7760, 9975, 12692, 15944, 19858, 24473, 29941, 36308, 43752, 52327, 62239, 73551, 86499, 101155, 117788, 136479, 157532, 181038, 207338, 236534, 269005, 304865, 344534
Offset: 0

Views

Author

Colin Barker, Mar 23 2015

Keywords

Comments

Also the number of partitions of 3*(n-2) into at most 6 parts. - Colin Barker, Apr 01 2015

Examples

			For n=3 the 3 partitions of 3*3 = 9 are [1,1,1,1,1,4], [1,1,1,1,2,3] and [1,1,1,2,2,2].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(x^8 + x^7 + 4*x^6 + 5*x^5 + 5*x^4 + 5*x^3 + 4*x^2 + x + 1)/((x - 1)^6*(x + 1)^3*(x^2 + 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Feb 22 2017 *)
    Table[Length@ IntegerPartitions[3 n, {6}], {n, 0, 40}] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [6,6]); k))
    
  • PARI
    concat([0,0], Vec(x^2*(x^8+x^7+4*x^6+5*x^5+5*x^4+5*x^3+4*x^2+x+1) / ((x-1)^6*(x+1)^3*(x^2+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))

Formula

G.f.: x^2*(x^8+x^7+4*x^6+5*x^5+5*x^4+5*x^3+4*x^2+x+1) / ((x-1)^6*(x+1)^3*(x^2+1)*(x^4+x^3+x^2+x+1)).