cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A256313 Number of partitions of 3n into exactly 4 parts.

Original entry on oeis.org

0, 0, 2, 6, 15, 27, 47, 72, 108, 150, 206, 270, 351, 441, 551, 672, 816, 972, 1154, 1350, 1575, 1815, 2087, 2376, 2700, 3042, 3422, 3822, 4263, 4725, 5231, 5760, 6336, 6936, 7586, 8262, 8991, 9747, 10559, 11400, 12300, 13230, 14222, 15246, 16335, 17457
Offset: 0

Views

Author

Colin Barker, Mar 23 2015

Keywords

Examples

			For n=3 the 6 partitions of 3*3 = 9 are [1,1,1,6], [1,1,2,5], [1,1,3,4], [1,2,2,4], [1,2,3,3] and [2,2,2,3].
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{0,0,2,6,15,27,47,72},60] (* Harvey P. Dale, Jul 18 2021 *)
  • PARI
    concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [4,4]); k))
    
  • PARI
    concat([0,0], Vec(x^2*(x^2+2)*(x^2+x+1)/((x-1)^4*(x+1)^2*(x^2+1)) + O(x^100)))

Formula

G.f.: x^2*(x^2+2)*(x^2+x+1) / ((x-1)^4*(x+1)^2*(x^2+1)).
a(n) = (6*n^3+6*n^2-3*n-5+(3*n+1)*(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((2*n+1-(-1)^n)/4)))/32. - Luce ETIENNE, Feb 17 2017

A256314 Number of partitions of 3n into exactly 5 parts.

Original entry on oeis.org

0, 0, 1, 5, 13, 30, 57, 101, 164, 255, 377, 540, 748, 1014, 1342, 1747, 2233, 2818, 3507, 4319, 5260, 6351, 7599, 9027, 10642, 12470, 14518, 16814, 19366, 22204, 25337, 28796, 32591, 36756, 41301, 46262, 51649, 57501, 63829, 70673, 78045, 85987, 94512
Offset: 0

Views

Author

Colin Barker, Mar 23 2015

Keywords

Examples

			For n=3 the 5 partitions of 3*3 = 9 are [1,1,1,1,5], [1,1,1,2,4], [1,1,1,3,3], [1,1,2,2,3] and [1,2,2,2,2].
		

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerPartitions[3n,{5}]],{n,0,50}] (* Harvey P. Dale, Jul 21 2019 *)
  • PARI
    concat(0, vector(40, n, k=0; forpart(p=3*n, k++, , [5,5]); k))
    
  • PARI
    concat([0,0], Vec(-x^2*(2*x^7+3*x^6+4*x^5+5*x^4+6*x^3+3*x^2+3*x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)) + O(x^100)))

Formula

G.f.: -x^2*(2*x^7+3*x^6+4*x^5+5*x^4+6*x^3+3*x^2+3*x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)).

A256524 Number of partitions of 3n into at most 4 parts.

Original entry on oeis.org

1, 3, 9, 18, 34, 54, 84, 120, 169, 225, 297, 378, 478, 588, 720, 864, 1033, 1215, 1425, 1650, 1906, 2178, 2484, 2808, 3169, 3549, 3969, 4410, 4894, 5400, 5952, 6528, 7153, 7803, 8505, 9234, 10018, 10830, 11700, 12600, 13561, 14553, 15609, 16698, 17854, 19044
Offset: 0

Views

Author

Colin Barker, Apr 01 2015

Keywords

Examples

			For n=1 the 3 partitions of 1*3 = 3 are [3], [1,2] and [1,1,1].
		

Crossrefs

Cf. A001400, A077043 (3 parts), A256525 (5 parts), A256315 (6 parts).

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -2, 2, -2, 0, 2, -1}, {1, 3, 9, 18, 34, 54, 84, 120}, 50] (* Jean-François Alcover, Apr 26 2017 *)
  • PARI
    concat(1, vector(40, n, k=0; forpart(p=3*n, k++, , [1,4]); k))
    
  • PARI
    Vec((x^2+x+1)*(2*x^2+1)/((x-1)^4*(x+1)^2*(x^2+1)) + O(x^100))

Formula

G.f.: (x^2+x+1)*(2*x^2+1) / ((x-1)^4*(x+1)^2*(x^2+1)).
a(n) = A001400(3n). - Alois P. Heinz, Apr 01 2015

A256525 Number of partitions of 3n into at most 5 parts.

Original entry on oeis.org

1, 3, 10, 23, 47, 84, 141, 221, 333, 480, 674, 918, 1226, 1602, 2062, 2611, 3266, 4033, 4932, 5969, 7166, 8529, 10083, 11835, 13811, 16019, 18487, 21224, 24260, 27604, 31289, 35324, 39744, 44559, 49806, 55496, 61667, 68331, 75529, 83273, 91606, 100540
Offset: 0

Views

Author

Colin Barker, Apr 01 2015

Keywords

Examples

			For n=1 the 3 partitions of 1*3 = 3 are [3], [1,2] and [1,1,1].
		

Crossrefs

Cf. A001401, A077043 (3 parts), A256524 (4 parts), A256315 (6 parts).

Programs

  • Mathematica
    Table[Length[IntegerPartitions[3n,5]],{n,0,50}] (* Harvey P. Dale, Mar 08 2019 *)
  • PARI
    concat(1, vector(40, n, k=0; forpart(p=3*n, k++, , [1,5]); k))
    
  • PARI
    Vec(-(x^8+x^7+4*x^6+5*x^5+5*x^4+5*x^3+4*x^2+x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)) + O(x^100))

Formula

G.f.: -(x^8+x^7+4*x^6+5*x^5+5*x^4+5*x^3+4*x^2+x+1) / ((x-1)^5*(x+1)^2*(x^2+1)*(x^4+x^3+x^2+x+1)).
a(n) = A001401(3n). - Alois P. Heinz, Apr 01 2015
Showing 1-4 of 4 results.