cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256325 a(n) = Sum_{k=0..n-1} (n-k)!*exp(-k/2)*M_{k-n,1/2}(k), where M is the Whittaker function.

Original entry on oeis.org

0, 0, 1, 5, 24, 136, 933, 7589, 71376, 760796, 9051353, 118784325, 1703388648, 26486926720, 443732646029, 7965563713781, 152504645563072, 3101366761047860, 66753627906345057, 1515914174890163541, 36218232449903567992, 908098606824551207384, 23839591584412453131765
Offset: 0

Views

Author

Peter Luschny, Mar 24 2015

Keywords

Crossrefs

Cf. A253286.

Programs

  • Magma
    [n eq 0 select 0 else (&+[(n-k-1)*Factorial(k)*Evaluate( LaguerrePolynomial(k, 1), k-n+1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Feb 23 2021
  • Maple
    a := n -> add(exp(-k/2)*WhittakerM(-(n-k),1/2,k)*(n-k)!,k=0..n-1):
    seq(round(evalf(a(n),64)), n=0..22);
    # Alternatively:
    a := n -> add(k*(n-k)!*hypergeom([k-n+1],[2],-k),k=0..n-1):
    seq(simplify(a(n)), n=0..22);
  • Mathematica
    Table[Sum[(n-k-1)*k!*LaguerreL[k, 1, k-n+1], {k,0,n-1}], {n,0,30}] (* G. C. Greubel, Feb 23 2021 *)
  • Sage
    [sum( (n-k-1)*factorial(k)*gen_laguerre(k, 1, k-n+1) for k in (0..n-1) ) for n in (0..30)] # G. C. Greubel, Feb 23 2021
    

Formula

a(n) = Sum_{k=0..n-1} k*(n-k)!*hypergeom([k-n+1],[2],-k).
a(n) = Sum_{k=0..n-1}(Sum_{j=0.. n-k}((n-k-j)!*C(n-k,j)*C(n-k-1,j-1)*k^j)).
a(n) = Sum_{k=0..n-1} (n-k-1)* k! * LaguerreL(k, 1, k-n+1). - G. C. Greubel, Feb 23 2021